HyperSQL User Guide
HyperSQL Database Engine 2.5.1

Edited by , Blaine Simpson, and Fred Toussi

HyperS@L

HyperSQL User Guide: HyperSQL Database Engine 2.5.1
by , Blaine Simpson, and Fred Toussi

$Revision: 6145 $
Publication date 2020-06-29

Copyright 2002-2020 Blaine Simpson, Fred Toussi and The HSQL Development Group. Permission is granted to distribute this document without
any alteration under the terms of the HSQL DB license. Y ou are not allowed to distribute or display this document on the web in an altered form.

HyperS@L

Table of Contents

(= = o TP SO P PP PPPPPTRTPPIN Xiv
Available formats for this OCUMENTiiiiiiiieiei e e e e eer e Xiv
1. RUNNING @Nd USING HYPErSOL ..ttt ettt ettt ettt e et e et e e et et e e e e et e e e eaba e eeeees 1
F g1 oTo (¥ oi (oo H PSP SPPT TR PTR 1
THE HSQLDB Ja ..ttt oo e e e ettt ettt e e e e e e e e ettt e e e e e e e e enbbba e aeaas 1
RUNNIiNG Datalase ACCESS TOOISciiitieeiiii ettt e e e et e e e 2
A HYPErSOQL D@BDASEiiiitiieiiii ettt ettt 2
IN-Process Access 10 Datalase CalalOgSeveeruneiiiiiieeieii et e et e et e et et e e e et eeeere e eeees 3
S V= Y oo (= PP PP TR PPPRTT 4
HYPErSOL HSQL SBIVEN oottt et r e e 4
HYPErSOL HT TP SoIVE oottt eeas 5
HYPErSQL HTTP SEIVIEL ..ot 5
Connecting t0 & Datalase SEIVENuuiiiii e e 5
SECUNLY CONSIAEIBIIONS ...evvueiiiiti ettt ettt ettt e e et e e et et e e e e et e e e esb e e eentaaeeees 6
USING MUILIPIE DELADASESvueiieiieeeeet ettt et e et e et e e 6
ACCESSING the DBeeiiii ettt et e e et e et et e e et e e et et e e e e e aees 6
CloSING the DaADESE ...ttt ettt ettt ettt et e et et e e e e a e aeee 7
Creating 8 NEW Datahaseccoouuuiiiiiiii ettt et 7
2. SOQL LBNJUBOE .eeneeiiiitieet ettt ettt ettt ettt et et eaes 9
SQL StANAAITS SUDPOM . evteeeeeitie ettt ettt ettt e ettt e et et e et et e e e eatr e e e eetar e e e esb e e e e enbneeeenbnaeeeens 9
Definition Statements (DDL and Others)cooouuiiiiiiiiiii e 10

Data Manipulation StAalemMentS (DIML)iiiiieie e 10

Data Query StAemMENtS (DQL) ...cveruiiiiii ettt ettt ettt et e e e e e e eaans 11
Calling User Defined Procedures and FUNCLIONScoouuiiiiiiiiciii e 11
Setting Properties for the Database and the SESSIONviiiiiiiiiiiii e 11
General Operations 0N Dal@haSecc.vuuiiiiiiiii e 11
TranSaCtion SEAEEMENTSvuuiiiiii ettt e et e et e et e e et eeeaaa s 12
COMMENLS IN SEALEIMENESeueeieit ettt e et ettt e et e e et e et et e e et et e e e eab e e enbaas 13

SQL Data @nd TalESeeeiiiiii et aaas 13
PErSISIENt TaIES .o e 13
TEMPOIAY TADIES .oeiiiiiii e ettt ettt e ettt e ettt e e e e n e e e ena e e e 14
ShOrt GUIAE tO DEEA TYPES ...ueeeiiiieeeei ettt ettt et e e e e e et e e e et e e e eaa s 14
Data TYPES aNU OPEIELIONScieertneteiti ettt ettt et ettt et et e e e e e et e eb e et eea e e e enea e e enanns 15
U1 o Y o T PSP PPPPTT 15

2 Tolo] L= I Y o= PP PPPPT 17
CharaCter SIING TYPES ..ttt et et e et e et e e e s 18
BiNary SING TYPES ettt ettt e e et e et e e et e e 19

=TT 1o T Y o= TSP PPPPTTUUPPIN 20

(o] oI D - - TP PTTRPPPPPTT 20
Storage and Handling of JaVa ODJECEScvevuuueiiiiiie ettt 21

Type Length, Precision and SCAIEiiiiiiiiiiiiii e 21
D= = (DTS Y 0= PP P PP PPPPPT 22
F01C= Y= I Y 1SS SRR 26
F N (= 7 TSP PTPPPI 29
ATTAY DEFINITION ... ettt ettt e e b 30
ATTAY REFBIENCE oottt e e et e et e ee 31
ATTEY OPEIBLIONS ... eieetti ettt ettt ettt et ettt e et et e ettt et e ettt et e e b e et e et e e e na e e eraans 31
INndexes and QUENY SPEEAiiiiii ittt 33
Query Processing and OPtimiSaLiONcoeuueniiiiii ettt e e et e e e e e e ene s 34
INdexes and CONGITIONSuiieiiie ettt et e et e et eeeae s 34
INAEXES AN OPEFBLIONS ...evtieieiii ettt ettt ettt e e et e et et e e e e et e e e eaa s 35

HyperS@L HyperSQL User Guide

Indexes and ORDER BY, OFFSET and LIMIT ..ooooiiiiiiiiiieee e e 35

3. SESSIONS AN TraNSACHIONSivvuiiiiiieiiii e it e e e et e et e e e e et e et e et e e et e e et e e et e eaa e eanneeetneesaneeaneenen 37
L@ = oY T 37
Session Attributes and Variablesoooiiiiiiiii 37
S S L0 AN w1010 1= 38
SESSION VaalES ...ciieiii e 38

S L0 I I o = 38
Transactions and ConCUIreNCY CONLIOIiiiueii i e e e e e e et e e e eanas 39
IV J 0= = =3 o o Vo N 39

Two Phase Locking with Snapshot 1S0lationccocouiiiiiiiiii e 40

(oo Q@001 =01 o) 11 1024 = 40
Locks in SQL ROULINES aNA THQUEIS ..uuivuniiiiiieiii et et e e e e e e e e e e e e e e e e e e et e e st eeaneees 40
Y PSP 40
Choosing the Transaction MOGElccouiiiiiiiiii e e e e e e e ee 41
Schema and Database ChanQeovviiiiiiie e e e e e e e e e e et e et e eanaees 42
SiMUItaneous ACCESS 10 TaADIESccvniiii i e 42

A =TT o RS =S o] P 42
Session and Transaction COoNtrol SEAEMENTScovuiiiiieiiiee e e e e e e e et eaa e eeas 43
4, Schemas and Database ObJECLSuuiiiiiieiii i e e e e e e e e e e e et e et e e et e e et e e stn e eatneasanaaes 50
L@ = oY T 50
Schemas and SChemMa ObJECEScuuiiii i e e e e e e et e et e e et e e aan e eeas 50
NAMES AN REFEIENCES ...iiviiiiii e e e e e e e e e e e e e et e e et e e et e eaneees 51
(01T 1 o (= S = £ 51
(001 = 40 1 = 52

[T 1T o A I 1= 53

o 0= 53
NUMDEr SEOUENCES ...iitiiiii et ee e e e e e e e e e e e e e e et e e et e e et e e et e e et e e etn e etn e eatneeanneeetnaes 53
1= o 1= PP 56

R T=.T 56
(0] 015 1 = (= 56
NS = 1 0] PPN 58
10 10 = £ 58
01U 11 == 58

g0 L= PPN 58

Y 101011 0 T PP PPN 58
Statements for Schema Definition and Manipulationcoooviieiiiiiiiiii e 59
Common Elements and StAEMENEScoouiiiiiiii e e e e 59
R a1 Te [o= v £ 60
(0010010010 (1 aTe [@ o)1= ot £ 61
o 0= 0= O = 1o o 61

LI o LT @1 (=" o o 62
Temporal System-Versioned Tablesand SYSTEM _TIME Periodcooevviiiiiiiieiiiiciiieeceeenn, 68
QIR o =TS 1 o P 69

LI o =T =TT o101 = o) o S 71
View Creation and Manipulationciiiuiiiiiieeiiie e e e e e e e e e e e e e eaes 75
Domain Creation and Manipulationcccouiiiiiiiiiiie e e e e e e e e e ees 76

QLI e (o L= Ot =7 o] o 77
Lo 1H 11 =IO (== 1 o o IS 78

S C o [U1< Tl @ = 1o o PPN 81

SQL Procedure SEAatEMENEeieeiiiiieiie e e e e e e e e et e e e e et e e et e e et e et e e e e aaaae 82
Other Schema OBJECt CrEatioNiiiiiiiiiiii e e e e e e aes 83

The INformation SChEMAciouiiii e e e e e e e e e e e e et e eean e eeas 86
References to Database OBJECESiiiiiiiiiii e 87
Predefined Character Sets, Collations and DOMAINScccccuiiiiiiiiiiiieiiinecin e 87

HyperS@L HyperSQL User Guide

Views in INFORMATION SCHEMA ...ttt a e 87
Visibility of INFOrMationooiiiii e e e 87
INE= 100 S 1o 1107 4 o o R 87

(D e W Y/ 0 =3 010 117 1 Lo o P 88

[oo [0 Tox g o) 19! o PN 88
Operations INFOMMIBEIONiiiieii e e e e e e e e e e et e e et e e et e e et e eaaeeannaees 88

SQL SEANAAIA VIBWS ...oeiiiiiiiiiiie e e e e e e e e e e e e e et e e et e e et e e et e et e eannaas 88

LI 1= A I = P 96
L@ = oY T 96
The IMPIEMENTALION ... e e e e e e e et e et e e et e e et e et e eaa e eatneeeanaeees 96
(D= T aTh o) o N 1= o] = 96
Scope and REASSIGNIMENToiuiii e e e e e e e e e e e e et e et r e et e e aaeeaenns 96

Null Values in Columns of Text TahlESccuuiiiiiiiiiii e e 97
(0001170 8= 1 (o o 1NN 97
Disconnecting TexXt TaDlEScouiiiiiiiiii e e e e e e e e e e 99

L= TSI L= o =P 99
Text File Global ProPartiESccuuiiiiiiiiiie it e e e e e e e e et e et e e et e e et 100
B I =157 o 0] 1 P 101
L Ao o= @ 11 (o) PN 102
(@< oV PR 102
Authorizations and ACCESS CONIOliiiiiiiii e e e e e e e e e e e e e et e e et e eanaees 102
BUIlt-IN ROIES @N0 USEIS ...uiiiiiiiii it e e e e e e et e e e e e et 103
Listing Users and ROIESiiiiiiiii e e e e e e e aaaas 104
ACCESS RIGNES .o e 104
Fine-Grained Data ACCESS CONIOluiiiiiiiii e e 105
Statements for Authorization and AcCesS CONLIOlccvviiiiiiiiiii e 106
7. Data ACCESS AN0 ChaANGE ..ovvuiiiiiiiiii et e e e e e e e e e e e e et e e et e e e et e e et e aanas 110
(@< oV PR 110
CUrsOrs AN RESUIT SEES ...iiiiiiiii i e e e e e e e e e e e e et e et e e aaeeeenns 110
ColUMNS BN ROWS ...oiiiiiii e e e e e e e e e e e e e et e e e e e e e e eanas 110

[N F= Y7o = (o o PP 110

10T oTo = = o |11 PSP 111

S = 1S Y71 112

[oo =1 1) Y PP 112

N U (o7 120 T 112
BT O @ = o 7= T PSP 112
IDBC Pala@MELErS ..oevtiieiiiii e ettt e ettt et e et e e et e e e e et e e e e et e e e et e e e e tt e e e et e e e et 113
JDBC and Data Change StAEMENESiiiuiiiiiieiiiee e ec e e e e e e e e e e e e e e e eaaas 113
JDBC Callahle SEBEMENEuiieeiii et e et e et aera s 114
JDBC REUMNED VAIUES ...ouiiiiiiii ettt e e e e et e e e et e e e eaa e 114
(LN 16 o gl D= o - (o) o 115
1= G = 1= 1 1= £ 115
[(= = | 115

LS = =10 =S oS 119

V= 8T o 1= o o T 120

[(=0 107 =SSP 127
AQOregate FUNCHIONSiiiiiiii e e e e e e e e e e e e e e e e et e e et e eeanaas 133
Other Syntax ElEMENS ..ouiiii e e e e e e e e et e e e e et e e aeaaees 135

Dala ACCESS SEAIOIMENES ...itiitiitiit ittt e e e e r e et et et r et et r et e n et e e raaaeanees 136
S C o B = 1= 141 0| A 137
L=/ o 1= PP 137
S0 o U= S 138
QUETNY SPECITICAIION .ivvtiiii e e e e e e e e e e e e e e et e et e e e e een s 138

I o L= T (== o) o 139

HyperS@L HyperSQL User Guide

0 o111 o 1= o] = PSP 142

IS 1< 1o TP 144

(0= ox (o) o P 144
(0001001 1=o I @0 11 40101 144

NN F= 01011 o 144
(CTgoTN o 1 o [@) o= - 1o o 145

N0 o 1= = 4 Lo o [147

S = @01 - 1o 0 T 148
With Clause and RECUISIVE QUENIES .. .c.uuiiiiiiii e e e e e e e e e e e aans 148
(@01 YA T q] =S [o] o [149

L@ 0 = 1 oo RPN 150

S o1 o PP 151
Indexes Used in SELECT SAEMENScvvvvunieiiiiiieiiiiieeeiiin e eeiin e e eetiseeeeteneeeeriseeeennneeas 151

Data Change SEAatEMENESvuiiiiiieii e e e e e e e e e e e e e e et e e et e e et s e e e e eat e eatn e e et eetnae 152
(D c L (S = < 1 1< o | A PSP 152
TIUNCAEE SEALEIMENTeeiee et et et eneenes 152

F s S = < 111 1| PP 153
L0l b= LIS = 1 1= | 155

Y o I = = 0 11 | PP RPTPRUPRPRN 156

(D E= o 001 oTR= 0o B - 158
S @ I 1Y =0 I o1] == 159
L@ N = PP 159
ROULINE DEFINITIONiiiiii et e e e e e e e e et e e e et e e e e et e e e e et aeas 160
ROULINE CRaraCLENISICS ..vuuieiiitiieeiiii e e e e e e e et s e e e et s e e e eat s e e e eatn s e eeeatnaeeaes 162

SQL Language ROULINES (PSM)uuiiiiiiiii et e e e e e e e e e e e et e et e e et e e anneeaens 164
Advantages and DiSAOVANTAJESocveuuiiiiieii e 165
ROULING SEBEEIMENES ... iiiiiiii et ettt e et e e s e et e e e et e e e et e e e et e e e et e e e eten e 165
(00410 To LU a0 IS 10101 o | P 166
TaDIE VarahDIBS ..o 167
VAITBDIES .o e e a et a e aaes 167
LU = o £ TP 168

[= 0| = PPN 168
ASSIGNMENT SEAEEMENT oot e e e e e e e e e e et e e e e et e e et e e eaneeeees 170
Select Statement : SINGIE ROWu.iiii i e e e e eaes 170
FOMEl Pal@MELErS ...ovuiiiiiiiii ettt e e e ettt e e e et e e e et e e e eaan e eeennnns 171
e 1 0 IS = =101 1 £ PSP 171
[terated FOR SEAIEMENTiiiiii e et e e et e e et e e e e et e e e eate s e e eeatnneeeees 172
ConditioNal SEALEMENESieiii e e e aaaa 173
S (U g IS = = 1 1< o | PP 174
(000011 {0 IS = 1 011 0| PSP 175

L TS a0 (= o)1 g 175
ROULINE POlYMOIPRISIM .ouiiii e e e e e e e et e e e e e e e eaes 175
Returning Data From ProCEAUIESiciiiiiiii e e e e e e e e e aaaas 176
RECUISIVE ROULINES ...ttt sttt e et r e et e e et e e e et eeeeaan s 178

Java Language ROULINES (SQL/IRT) .uuuiiiiiiiiii it e e e e e et e e e e et e e et e e et eeaaeeanaas 179
POlYMOIPRISIN oo 180

Java Language ProCEAUIESiiiiuieiiii i e e e e e e e e e e e e e e e et e e et e e et eeaaeeaanees 181

JaVA SEAEIC MEINOOS ... it e e 182
(IS0 r= o YA o o o g PP 183
Securing Access to Classes and ROULINESc.uuiiiiiiiiiiiiie e e e 183
LAY 1 21 o 184
User-Defined Aggregate FUNCLIONSiiiiiiiiii e e e e e e e e e e ean s 184
Definition of AQgregate FUNCHIONSccuuiiiiicii e e e e e e e e e e e e e e eaen 184

SQL PSM AQQregate FUNCLIONSc.uuiiiiiieiiiieiiiiee e e e e e e e e et e e e e e e e e et e e et e e et e e eanaees 185

Vi

HyperS@L HyperSQL User Guide

Java AQOregate FUNCLIONS ... ccuuiiii e e e e e e e e et e e et e e ea e eeas 187

LS N 4 oo 1= PN 188
L@ N = PP 188
T O I T o L= £ N 188

F N I I ¢ o T S 189
N I AN B @ i I (T fo = £ S 189

QI 0 o L= (o] 0= = 189
B0 10 L= Y= | 189

LT =011 = /P 189

I g Te o L= e v o TN 02T PP 190
REFEIENCES 10 ROWS ...t ettt et e e et e et e e e e eees 190

B oo L= @0 o [o) o P 190
TrIQOEr ACHON 1N SOL ..ttt e e e e e e e e e e e et e et e e e e et eaaa s 190
TRIQOEr ACHON 1N JAVA ..uiiiiiiii i e e e e e e e e et e e e e e et e e e e aanas 191

QI oo L= Ot =" o) o P 192
10. BUIE TN FUNCLIONS ...ttt sttt e e e e et e e et et e e et s e e e eatn e e e eaan s e e eenenaeeeennns 195
L@ N = SR 195
String and Binary String FUNCHIONSuuiiiiiiiii e e e e e e e e e e e e e e e anes 196
[N 0T 0 T ol g 1 g PP 203
Date Time and Interval FUNCHIONSoouuuiiiiiii e et e et e e e e e eeanns 207
Functions to RePOrt the TIME ZONE.civuiiiiiii et e s 207
Functions to Report the Current DatEliMEiiiiiiiiiiicii e e e e eanns 208
Functions to Extract an Element of a Daletimec.ovviiiiiiiiiiiiiiie e 209
Functions for Datetime AMthMELICcoouuiiiiii e 212
Functions to Convert or Format a Datelimeooviiiiiiiiiiiiii e 215

F N 4 = YA U o PP 217
GENErAl FUNCHIONS .oeiiiii ittt e et e et r e e et e e e et e e e e et e e e esan s 219
VS (= 1 U o 221
S L g Y = T 1= T o | PPN 226
Koo =50 @ o< - o) o [226
(D= 010 001= 0 O 1Y 0= 226

D = 0= s O N/ === P 226
L= o =TSSP 227
=T LI @ o= ot £ P 227

(D= o107 001= 0 or0] 1=t S 228
ACID, Persistence and Reliabilityoiiiiiiiiii e 228
Atomicity, Consistency, Isolation, Durabilitycccocoiiiiiiiiiiiii e 229
VS (= 1O o= = o] P 229
Temporal System-Versioned TablESuiiiiiiiii e e 230
0L T aTo 1= o LIRS o= o= P 231
Checking Database Tables and INAEXESiiiiiiiiiii e e 231
Backing Up and Restoring Database CafalOgScvvvrieiiiiiiieiiieeeii e e e e e e e e et e e e eeaas 232
MaKiNG ONliNE BACKUDSuuiiiiiiii e e e e e e e e e e e e e e e et e e e eanas 232
Offline Backup ULIlIty SYNAXcovuiiiiiiiiii e e e e e e e e e e 232
MaKing OffliNE BACKUDSuuiiiiiiiii i e e e e e e e e e e e e e et e e et e et e e aaeeaens 233
EXaMINING BaACKUDS .vuiiiiiieiii it e e e e e e e e e e e e e e e et e e et e e eanaee 233
RESIONNG @ BaACKUD .vviiiiiiii e e e e 233
ENCrypted Dal@hasgScouuiiiiiieiii i e e e e e e e e e e e 233
Creating and Accessing an Encrypted DatabhaSec..oveviiiiiiiiiiiiieiie e 234
SPEEA CONSIAEIBLIONS ...vuiiiiiiieiii i e e e e e e e e e e e e e e e e et e e et e e et e e et e e et e e aaneeeenss 234
SECUNLY CONSIAEIAHIONS ...uiieiieiiieii e e e e e e e e e e e e e e et e e et e e et e e et e e et e eeanaeeees 235
Monitoring Dataase OPEratiONSceviuuieiiiieiiie e e e e e e e e e e et e e e e e e et e e arnaeeaes 235
External Statement Level MONITONNGccuuiiiiieiiiici e e e e e e e e aaes 235
Internal Statement Level MONITOININGcivvniiiiici e e e e e e e aaaas 235

Vii

HyperS@L HyperSQL User Guide

Internal EVENt MONITOIINGiiiueii e e e e e e e e e et e e e e et e e st e e e e eenaas 235
(oo 720 I oo I 01 G oo o 1o [P 236
Server Operation MONITOMING ..u.iiuieiii e e e e e e e e e e et e et e e aneeeanns 236
Dz = 072 s I = o U Y 236
Basic Security RECOMMENCALIONSuuiiiiiiiiiii e e e e e e e e e aa s 236
Beyond Security DEfAUITSccoiiiiiii e 237
AULhentication CONEIOIiiiii e e e e et e e e eaa s 237

S 2 < 111 0 PP PTPPT 238
VS (= 1O o= = o] PP 238

Data Management SEalBMENTSiuiiii e 240

(D = 0= s I = 1 o 241

SQL ConformanCe SEHINGS ...c.uueeieniiiiieiiiee et ee et e et e e e e e e e e e e e e et e e et e e et e et eeaaneeannnas 245
Cache, Persistence and Files SEtiNGScivviiiiiiiiii e 254
AULhENTICAtION SELINGS .ovuiiriiiii e e e e e e e e e e e et e e et e e et e e e e e eanaees 258

12. Compatibility With Other DBIMS ...t e et e et e e e eaa s 260
(O0 1o 1] o TH LY @ 1YL= 4/ = 260
PostgreSQL ComMPatibilitycoouiiiiii e e 260
MySQL ComPatibilityooiiiiiii e 261
Firebird CompatibDilitycoouiiiiiii e 263
Apache Derby CompatibDilityoiiiiiiii e 263
Oracle Compatibilityoiiiiii e 263

[252 @0 0010 7= 11 11 11 264

MS SQL Server and Sybase Compatibilitycooiiiiiiiiiiii e 264

T o o707 1 =P 266
L0010 1< o 1 T U PP 266
Variables 1IN ConNECION URL iiiiiiieiiiii et e et e e et e e e et e e e e et 267
Properties for Individual CONNECLIONScouuiiiiiiiii e e e e e e e eaaas 267
Properties for the Dat@hasecccuiiiiiiiiii e 270
SQL ConformanCe PrOPETIESc.uuiiiiiiiiiieiii et e e e e e e e e e e e e e et e e et eeenas 271
Database Operations PrOPEITIESccivuiiiiii i e e e e e e e e e e e ean s 276
Database File and Memory PropartieSoiiiiiiiiiiieiii e e e e e aens 278
(O o 0 0= 1 11 283

Y S (= L e (0] 0= (1= 284
14. HyperSQL NetwWOrk LISLENEIS (SEIVEIS) ...civtuiiiiieiiiietie ettt e et e e e e et e e e e e e e e et e e et e e et e e eaeeaeas 286
IS = 0= PP SPP 286
HY DB S SV ottt 286
HYPErSQL HT TP SOIVEr ittt e e et e e et e e e et n e e e eatn s e e eestnneeeenes 286
HYPErSQL HTTP SEIVIEL oo e e e e e eaanns 287
Server and WeD SErVEr PrOPErtiESccuuiiiiiiiiii e e e e e e e e e 287
Starting a Server from your APPIICAIONiiiuiiiiiie e e e e e r e 289
Shutting down a Server from your APPIICAIONcciuiiiiii e 289
Allowing a Connection to Open or Create aDatabasecovevviiiiiiiiiiieiie e 289
Specifying Database Properties at SErver Startoovviiiiii i 290
B IS 0T Y/ o PN 290
S (U= 1 1= | £ PP 290
Encrypting your JDBC CONMNECLIONuiiitiiiii eanaas 290
MaKing a Private-Key KEYSIOrEcciuuiiiiiiiiii e e e e e e e e e e e e aanas 292
Automatic Server or WebServer startup on UNIX ... 293
NEIWOTK ACCESS COMEIOI ...iiitiee ettt e et e e et e e e e et e e e eata e e e eate e eaeettnaeeaees 293
15, HYPerSQL 0N UNIX ittt e ettt e e ettt e e e e et e e e e et e e e eettn e e e eett s eeeeetenaeaaerenaeeenes 295
001 PP 295
F 0TS = = o) o PSR 295
Setting up Database Catalog and LIStENEroiiiiiiiiiieiiie e e e e e e e e e 297
ACCESSING YOUN DAADASEiiiiiiii e e e e e e e e e e e e et e e et e e e e aans 298

HyperS@L HyperSQL User Guide

Create additionNal ACCOUNESiiiiiii ettt e e e et e e et e e e et e e e et s e e e aaanaeeeanens 302
S a1 o011/ o P 303
Running Hsgldb as @ System DaEmMONuoiiiniiiiii e e e e e e e e e e e e et e e et e e eanees 303
Portability of hsql db NIt SCIIPE ..ovvnie e 303

INit SCIIPt SEUP PrOCEAUIE ...ueieiiiii e e e e e e e e e eaas 303
Troubleshooting the TNt SCIIPL ...cove i e e e 307
LU0 | =o 1 2o P 308
I D= o o)V 001= 010 T [309
= aaTo T VA= oo B I T 2 L 309
Table MemMOry AlIOCEIIONuuiiiii e e e e e e e e et e et e eanaas 309
Result Set Memory ALTOCALONcoiuiiiii e e 309
Temporary Memory Use DUring OPErationSceevuuieiiieeiiieeiiiieeiieeeineeeie e e e e esaneenens 310

Data Cache Memory AIOCAHONcouuiiiiiiiiie e e e e e e eaaas 310
Object Pool Memory AIIOCAtIONccouiiiiiiie e e e 310

LOD MEMOIY USAgE ivviiiiiiieii et e e e e e e e e e e e e r e e e et e e et e e et e e et e e et e e aaneeeenns 311
USING NIO FIlE ACCESS .iiiiiiiiiiiiii ettt e et e e e e e e e e r e e e et e e et e e et e et 311
= W DI ES TS = oY U £ - 311
Using HyperSQL Without Logging Data Changecceuuieiiiiiiiiiieiii e ee e e 311

Bulk Inserts, Updates and DEIEIEScccvuiiiiiieiii e e e e 312
Managing Database CONNECLIONSiiiiiiiiiiieiii e e e e e e e e e et e e e et e e et e e eaneeeeas 312
Application Development and TESHINGuiiieiiiiiiiiie e e e e e e e e e eaens 313
Tweaking the Mode Of OPEralioNoiiiiiiiiiii e e e e e e e e e e et e e et e e eanees 314
Embedded Databases in Desktop APPlICAtioNSccvvniiiiiiiiii e 314
Embedded Databases in Server AppliCationSoovviiiiiiiiiiii e 314
Mixed Mode : Embedding a HyperSQL Server (LIStENEr)covvvviiiieiiiieiiiieeiieeeee e e 314
SEIVEN DABDASES ..vuiiiiiiiiee ittt e ettt a et a e et aae 315
UpPGrading Dat@haSESccuuiiiiiiiiii e e e aa 315
Manual Changes to the *.SCript FIleo.uiiiiiii e 315
Backward Compatibility ISSUESiiiiiiiiiiiiii e e e e e e e e e e e e et e e et e e e e anaees 316
HyperSQL Dependency Settings for APPlICAIONSccovuieiiiiiiiii e 318
What VErsion 10 PUIL ... 318
Using the HyperSQL Snapshot REPOSITONYovvuniiiiiiiiii e e e e e e e e e e 318

R 00 =A< £ o] a1 o o 319

17. HYperSQL Vi@ ODBCouiiiiiiiiiiie it e et e et e e e e e et e e e e et e e e e et r e e e ee b e e e e eebeneaeeatesaeaentnnaaaees 322
L@ N = PP 322
UNixX / LINUX INSEAIHTBEION .eeeeiee et e e e e et e e e et e e e eaan e e e eannns 322
WINAOWS INSEATBIION .evtieeeiii e et e e e et e e e e et seeeett e e e e eataeeeabnaeeeees 322
S 1] 325
S 101 0] = 327
I o Lo S T o 327
y N I B =30 =YY 0] (oL PP 329
List of SQL Standard KEYWOITSuiiiiiieiiiieiiiie et e e e e e e e e e e e e et e et e e st e e e e eaneeaen 329
List of SQL Keywords Disallowed as HyperSQL dentifiersccooveviiiiiiiiiiiniiiieeie e, 330
Special FUNCHON KEYWOITScouuiiiiiiii e e e e e e e e e e e e et e e e e e e e eanas 331
B. HyperSQL Database FileS and RECOVEIYcouuiiiiiiiiiiei e et e e e e e e e e e e eeaa e e aanees 332
(D 0= = T = PP 332
S - (=< SRS 332
0o o 1= SR 333
Clean SHULHOWN ... e e et e e et e e e et e e e et e eeeeens 333
= 1 Lo PRSPPI 334

L C S (0] PP TP PPN 334

C. BUIAING HSQLDB JAS ...ciiitiietiiiiitetiiie s et e e ettt e ettt s e e et e e e et s e e e et e e e e et e e e e et a e e e et e eeestnn s 335
001 PP 335
BUIlAiNg With Gradleooiiiiii e e e e e 335

HyperS@L HyperSQL User Guide

Invoking a Gradle Build GraphiCallycccouiiiiiiiiiiii e 335

Invoking a Gradle Build from the Command Linec.ccoiiiiiiiiiiiiiii e, 338

L LS T 0T =" | = N 339

L T0TH Lo T 0T V1 1 o | 341

1@ o] =1 o T To 7Y 2 | S PPN 341

Building HSQLDB With AL ...cceiiiiiiiiiie et e e e e e s e e e e e e e e aaa e e e eeeees 341

Building for DIfferent JDKSuiiiiiiiii e e e e e e e e e e 342

Building With IDE COMPILES ..ouuiiiiiiieii e e e e e e e e e et e e et e e et eeaaeeaanaees 342
HYPErSQL COOESWITCNEruiiiiiiiii e e e e e e e e e et eeaa s 343
BUilding DOCUMENLEEIONuuiiiiiiiiit i eiie e e e e e e e e e e e e e e e et e e et e e et e e et e e st e e st e e st e eeaneesnnanes 344

D. HyperSQL With OpenOffiCeuiiiiiiiii e e e e e e e et e e eaaees 346
HyperSOQL With OpeNOffiCe ...vuiiiii e e e e e e e eees 346
Using OpenOffice / LibreOffice as a Datahase TOOlccuviiiiiiiiiiiiiii e 346
Converting .odb files to use with HyperSQL SEIVErooiiiiiiiiiiii e 346

I o Y o= @ I = I 124 P 347
S I 1 0 L= 349
€T oTc = I g o PPN 356

HyperS@L

List of Tables

1. Available formats of thiS dOCUMENTiiiiiiiii et Xiv
10.1. TO_CHAR, TO_DATE and TO_TIMESTAMP format elementsccoevuiiiiiiiiinieiiiiinieeeiieeeenen 217
13.1. Memory Dat@hase URLoiiiiieiii et ettt e 266
13.2. File DAEDASE URL ...ttt ettt e ettt e et e e et e e et e e e e e aee 266
13.3. ReSOUICE Datahase URLuiiiiiiieiiee ettt ettt et e e enaaas 266
13.4. Server Database URLoouuiiiiiiiiiei ettt ettt ettt aaaas 267
13.5. USEr @N0 PASSWOITiieeiiiee ettt ettt ettt ettt et e et et r et e et e e e et e e e e e e eaan s 268
13.6. Closing old ResultSet when Statement iS reUSEAuuiiiiiiiiieiiii e 268
13.7. Column Names in IDBC RESUITSELcoouuiieiiiiiii e 268
13.8. In-memory LOBS from JDBC RESUITSELcooiuiiiiiiiiiieiie e e e 269
13.9. Empty batch in IDBC PreparedStatementcc.uuieeirtiieiiiie ettt e e e e 269
13.10. Creating NEW DatahDaseccceeuuieiiiii ettt ettt e et 269
13.11. AULOMELIC SHULAOWNeiieit et e ettt e et e ettt e e et et e e et eba e e e eebanaeeees 270
13.12. Validity CheCK PrOPEITY ...coveiiiiiiii it e ettt e e et e ettt e et et e e e et neeeeanaeaeee 271
13.13. Execution of Multiple SQL SEEEMENES EC.ovvuuiiiiiii i 271
13.14. SQL Keyword Use as [ENifIEriiiiiiiiiii e 271
13.15. SQL Keyword Starting with the Underscore or Containing Dollar Charactersccooevevvveiieennnnne. 271
13.16. Reference to COlUMNS NBIMESiiiiii ittt ettt e ettt e et e e b e e ebaa s 272
13.17. SiNG SIZE€ DECIAIAHONceiitieeeie ettt e e e e e e eba s 272
13.18. Type Enforcement in Comparison and ASSIGNMENTEccouuuieiiiiiieeeiiee e e et e e e e eeei e eeens 272
13.19. Foreign Key Triggered Data Changeoooieiiiiieiiiiieeiie ettt e et e e 272
13.20. Use Of LOB fOr LONGVAR TYPES ..iiitiiiiiiiii ettt ittt ettt ettt e e et e e et e e e e et e e e enan e aeenes 273
13.21. Type of string literalsin CASE WHEN ..ottt eaeaas 273
13.22. Concatenation With NULLuuiiiii e e e et e et e e e s 273
13.23. NULL in Multi-Column UNIQUE CONSIFAINESoveuueieteietiieiiieaeii e et e et eeii e e e eae e eeineeeenaees 273
13.24. Truncation or Rounding in TYPE CONVEISIONuueiiiiieiiiie ettt e et e e e 273
13.25. Decimal Scale of DiviSion and AV G VAIUESooiiiiiiiiiiiiie et 274
13.26. SUPPOIT FOr NBN VAIUES ...t ettt e e e e e e e ra s 274
13.27. SOrt order Of NULL VBIUESiiiiiiiieiiii ettt ettt ettt e e et e e e et e e e ena e eeees 274
13.28. Sort order of NULL values With DESCcooiiiiiiiiiiiec e 274
13.29. String Comparison With Paddingoioiiiiiiiiiii e e 274
13.30. Default Locale Language Collationieeeeuineeiiiie ettt 275
13.31. Case-Insensitive Varchar COIUMNSoouuiiiiiiii et e e e e e e e 275
13.32. Storage Of Live JaVa OBJECESuuiiiiiiieiiii ettt 275
13.33. Names of System Indexes Used fOr CONSIIAINTSuuuieiiiriieiiiiirieeieiie e e e e e 275
13.34. DB2 SEYI@ SYNEAX ..ceeitieeeiiti ettt ettt ettt ettt e e et e e et et e e e e e e et e e e et e eee 276
13.35. MSSOQL SEYIE SYNEAX ... eeeetiieeeeti ettt ettt ettt ettt e e e et e et et e et e et e e e erbe e eeenaas 276
13.36. MYSQL SEYIE SYNEBX .eevtueeieiiieeeeti ettt e ettt ettt e et et r e e et e et et e et e b e e e b 276
13.37. OFaCle SIYIE SYNLAX ...ceeeeiieeeei ettt ettt e e e e et e e e e et e e e 276
13.38. POStOreSQL SEYIE SYNLAXcieeeiieeiiii ettt ettt ettt ettt e e et e e eb s 276
13.39. DEfAUIT TADIE TYPE ettt ettt e ettt e ettt e e et et e e et et e e e e et e e e enaaaeeee 276
13.40. Transaction CONIOl IMOOEuuuiiiiii ettt e e e e e aaan s 277
13.41. Default 150lation LEVEl FOr SESSIONSccevuiieiiiiii ettt e e et eeeeaa e eees 277
13.42. Transaction RoIIback in DEAAIOCKcoiiiiiiiiii e 277
13.43. Transaction ROIIDACK ON INEEITUPLiiiii e e 277
13.44. Time Zone and INTEIVaAl TYPES ..oovuuiiiiii ettt ettt et et e e e an e e e ebe e eenees 277
13.45. Opening Datahase as R0 ONIYcooiuiiiiiii e e e eeaeens 278
13.46. Opening Database Without Modifying the FIleScoooiiiiiiii e 278
13.47. Huge database files and taleSoiiiiiiii e 278
13.48. EVENE LOGUING . .eettnieiittieeettt ettt ettt e ettt e e ettt e e et et e e et et e e et et e e et et e e et et e e e e et e e e e era s 278
1349, SQL LOGGING +ettuettetunetetttaeeeeti et eete e et e e et eet e et et t e et e et e et et b e et e eh e e et e b e e e e nb e e e aa e e enan s 279

Xi

HyperS@L HyperSQL User Guide

13.50. Temporary ReSUIt ROWS iN IMEMOIY uuiiiiiiii e e e e e e e e e e e e e et e e e e e e e ean s 279
13.51. UNUSEA SPACE RECOVEIY ..ivtiiiiiiiii et e e e e e e e e e e e e e e e e e e et e e et e e et e e e e e et e e et e eeannas 279
13.52. ROWS CaChed [N IMEMOIY ..uuiiiiiieii e e e e e e e e e e e e e e e e e e et e e et e e et e e et e e eaneeeanans 279
13.53. Size of ROWS CaChed iN MEMOIYiiiiiiiii et e e e e e e e e e e e e e et e e e eaaeees 280
13.54. Size Scale of DisSK Tahle SIOTAE ...vuiviiieiii e e e e e e e e e e e aanas 280
13.55. SiZe SCAle Of LOB SIOTAQE ..vvuiiivuieiiiiiiiieii e et e e et e e e e e e e e e e e e e et eeat e e e et e e et e e st e eaneeanns 280
13.56. Compression of BLOB and CLOB dalAocvvuieiiiieiiiieeiiiieeiieeei e et e et e eei s e s e s e esaneesnneeenes 280
13.57. Internal Backup of Database FilESccouuiiiiiiii e e 280
13.58. USE Of LOCK FIlE ittt ettt e et e e et e e e e et neeeatnnaeeennes 281
13.59. Logging Data Change SEateMENEScciiiiiiiiieiiii e e e e e e e e et e e e e e et e e e eaaeees 281
13.60. Automatic CheCKpPOINt FIEOUENCYovviiiiiieiii i e e e e e e e e e e e e e e et e e et e e eanaeees 281
13.61. Automatic Defrag at ChECKPOINTiiii i e e e e e e e e e e e et e e eanaaees 281
13.62. Compression Of the .SCIIPL fIlEiiue i e e e e 282
13.63. Logging Data Change StatementS FIEQUENCYcvvuuiiinieiiieiiiieeie e e e e e e e s s e et e e e e e et esaneeeanes 282
13.64. Logging Data Change StatementS FIEQUENCYcvvuniiiruieiiieiiiieeie e e e e e e e e s e e e e e e e et esaneeeanaes 282
13.65. Use of NIO for Disk Tahle SEOTagEuuieeinieiiiieiiie e e e e e e e e e e e e e e e an s 282
13.66. Use of NIO for Disk Table SEOTagEuieviuiiiiieiiie et e e e e e e e e e e e e anas 282
13.67. RECOVEIY LOQ PrOCESSING c.vuuiiiuiiiiiieiii et e et e et e e e e e e e e e e e e et e e et e e et eeat e e et e e st e eeaneeannaees 283
13.68. Default Properties for TEXT TablES ..u.iiiiiiii i e e e e e aaas 283
13.69. Forcing Garbage COllECHIONciiiiiii e e e e e e e e e eaa s 283
13.70. Crypt Property FOr LOBSuiiiiiiiiiiie et e e e e e e e ens 283
13.71. Cipher Key for ENCrypted Databaseccceuiiiiiiiiiii i e e e e e e e e e e e aees 283
13.72. Cipher Initialization Vector for Encrypted Databasecooeviiiiiiiiiiiii e 284
13.73. Crypt Provider Encrypted Datahasecc.uiiiiiiiiiiiiiii e 284
13.74. Cipher Specification for Encrypted Databaseccceuviiiiiiiiiiieii e 284
ST oo o 10T T =10 1=.11 P 284
G T = B I o = PP 284
A AN - V= W T 0T Lo o PP 285
14.1. common server and WEDSEIVEr PIrOPEITIESc.u.iiiiieiiii ean s 287
A = a1 oo o= 1= 288
14,3, WEDSEIVEr PrOPEITIES .iiuniiiiiiii ettt e e e et e et e e e e e e e e e et e et e e et e e et e e et e e et e e e e e et e e eraeernaaaes 288
S 117 o T PP 328

Xii

HyperS@L

List of Examples

1.1. Java code to connect to the 10Cal NSOl SEIVErooui i e 5
1.2. Java code to connect to the 10Cal NP SEIVErooueiiiii e 5
1.3. Java code to connect to the local secure SSL hsgls: and https: SErVErsocoeviiiiiiiiiiiiii e 6
1.4. specifying a connection property to shutdown the database when the last connection isclosed 7
1.5. specifying a connection property to disallow creating a new databaseccooveiiiiiiieiiiiiincc e, 8
3.1, User-defined Session VariahleSooiiiiieiii e 38
3.2. User-defined Temporary Session TahIESuiiiiiiiiiii et e 38
3.3. Setting TransaCtion CharaCteriStICSuuuueieiii ettt ettt ettt n e e e re e e enaens 44
34 LOCKING TADIES ...ttt e et et ettt ettt e et e e e e et e e e en e aae 45
35, ROIDACK ... e 46
3.6. Setting SESSION CharaCleiSlICSueiiitii ettt ettt e ettt e et e e e e ebe e e e eeneaeeees 46
3.7. Setting SESSION AULNOMIZALONcieiii ettt e et e e et e e e e ebe e eeees 47
3.8. SELtiNGg SESSION TIME ZONE ..uiieeiitie ettt ettt ettt e et e et e e e e et e e et et a e et et e e e e et naeeera s 47
4.1. inserting the next sequence value into @table rOWc.uuiiiiiiii i 54
4.2. numbering returned rows of a SELECT in sequential ordercoouiiiiiiiiiiiiiiiiiieei e 54
4.3. using the ast ValUe Of @ SEOUENCEceeiiiiiiiii ettt ettt et e e e e e b s 54
4.4. Column values which satisfy a 2-column UNIQUE CONSLraintc..ovieiiiiiniiiiiiiieeeiiieeecee e 57
11.1. Using CACHED tables for the LOB SCREMAuiiiiiiiieiiiii et 228
11.2. Creating a System-versioned tahleooiiiiiiiiiiii e 230
11.3. Displaying DBBECKUD SYNEEX uiieiiieieii ettt e e et eere s 233
11.4. Offline Backup EXAMPIEu ettt ettt 233
11.5. Listing a Backup With DDBACKUDcceuuuiiiiiieieii ettt et ettt et e e e eeaens 233
11.6. Restoring a Backup With DBBaCKUDcieieiiiiii e 233
11.7. SQL LOG EXAMPIE ..ttt ettt ettt et naaas 243
11.8. Finding foreign key rows with no parents after a bulk importcooooiiiiiiiiii e, 254
14.1. Exporting certificate from the SErver's KEYSIOrei oo 291
14.2. Adding a certificate to the Client KEYSIOrecoouuiiiiiiii e 291
14.3. Specifying your own trust store to @ JDBC CHENtcoouviiiiiiiiieiie e 291
14.4. Getting a pem-style private key into 8 JIKS KEYSIOIEiiiiiiiiiiiiiie e 292
14.5. Validating and Testing @an ACL fill@ ... 294
15.1. eXxample SOItO0I.FC STANZAcceeriieiiii ettt et 304
16.1. Using CACHED tables for the LOB SCREMAuiiiiiiiieiiiii et 311
16.2. MaNINVOKEr EXAMPIE ...ouiiiiii ettt ettt e et e et et e e e et e e e e e eees 314
16.3. HyperSQL Snapshot Repository DefiNitionco.uiiiiiiiiiiiiiiie e e 318
16.4. Sample Snapshot VY DEPENUENCYceeeiiieiiiii ettt et e et e e et e e eete e eeeee 319
16.5. Sample Snapshot Maven DEPENAENCYoiiieuiiiiiii e e e e enaens 319
16.6. Sample Snapshot Gradle DEPENTENCYccuvuieiiiiee et 319
16.7. Sample Snapshot ivy.xml loaded by Ivyxml pluginoooiiiiiii e 319
16.8. Sample Snapshot Groovy DependenCy, USING GraPEocceeruuieeriineeeiiie e et e et e e e e e e 319
16.9. Sample RaNGE 1VY DEPENUEINCY vuuiiiiiii ettt e e et e e et e e e et e e e eeaa e eeeees 320
16.10. Sample Range Maven DEPENUENCY uuiiiiiiiieeeeii ettt et e e e e e e e e e e eneans 320
16.11. Sample Range Gradle DEPENAENCYoeiiiriieiiiii ettt e e s 320
16.12. Sample Range ivy.xml loaded by IvyxXml plUGINoiiiiiii e 320
16.13. Sample Range Groovy Dependency, USING Grapeoocieuiuieeiiiiieeeiiiee et e et e e 321
C.1. Buiding the standard HSQLDB jar file With ANtiiiiii e 342
C.2. Example source code before CodeSWItCher ISTUNoveiiiiiiiii e 343
C.3. CodeSwitcher command liNE INVOCALIONccouuuniiiiiii e e e e e 343
C.4. Source code after COOESWITCNEr PrOCESSINGceevruiieiiitiee it e et e e ettt e et e e et et e e ert e e eentaaaeeees 343

Xiii

HyperS@L

Preface

HyperSQL DataBase (HSQLDB) is a modern relational database system that conforms closely to the SQL:2016
Standard and JDBC 4.2 specifications. It supports all core features and many optional features of SQL:2016.

The first versions of HSQLDB were released in 2001. Version 2, first released in 2010, was a complete rewrite of
most parts of the database engine.

This documentation covers HyperSQL version 2.5.1. This documentation is regularly improved and updated. The
latest, updated version can be found at http://hsgldb.org/doc/2.0/

If you notice any mistakes in this document, or if you have problems with the procedures themselves, please use the
HSQL DB support facilities which are listed at http://hsgldb.org/support

Available formats for this document

This document is available in severa formats.

Y ou may be reading this document right now at http://hsgldb.org/doc/2.0, or in adistribution somewhere else. | hereby
call the document distribution from which you are reading this, your current distro.

http://hsgldb.org/doc/2.0 hosts the latest production versions of all available formats. If you want a different format of
the same version of the document you are reading now, then you should try your current distro. If you want the latest
production version, you should try http://hsgldb.org/doc/2.0.

Sometimes, distributions other than http://hsgldb.org/doc/2.0 do not host all available formats. So, if you can't access
the format that you want in your current distro, you have no choice but to use the newest production version at http://
hsgldb.org/doc/2.0.

Table 1. Available for mats of this document

format your distro at http://hsgldb.org/doc/2.0

Chunked HTML index.html http://hsgldb.org/doc/2.0/guide/
All-in-oneHTML | guide.html http://hsgldb.org/doc/2.0/guide/guide.html
PDF guide.pdf http://hsgldb.org/doc/2.0/guide/guide.pdf

If you are reading this document now with a standalone PDF reader, your distro links may not work.

Xiv

index.html
http://hsqldb.org/doc/2.0/guide/
guide.html
http://hsqldb.org/doc/2.0/guide/guide.html
http://hsqldb.org/doc/2.0/guide/guide.pdf

HyperS@L

Chapter 1. Running and Using HyperSQL

Fred Toussi, The HSQL Development Group
$Revision: 6145 $

Copyright 2002-2020 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.

2020-06-29

Introduction

HyperSQL Database (HSQLDB) is a modern relational database system. Version 2.5.1 is the latest release of the
all-new version 2 code. Written from ground up to follow the international 1SO SQL:2016 standard, it supports the
complete set of the classic features, together with optional features such as stored procedures and triggers.

HyperSQL version 2.5 is compatible with Java 8 or later. A version of the HSQLDB jar compiled with JDK 9 with
support for the Java module system is available. Versions of the jar compiled with JDK 6 are also available. Those
versions are numbered 2.3.8 to distinguish the capability differences.

HyperSQL isused for development, testing and deployment of database applications.

SQL Standard compliance isthe most unique characteristic of HyperSQL. There are several other distinctive features.
HyperSQL can provide database access within the user's application process, within an application server, or as a
separate server process. HyperSQL can run entirely in memory using dedicated fast memory structures as opposed
to ram disk. HyperSQL can use disk persistence in a flexible way, with reliable crash-recovery. HyperSQL is the
only open-source relational database management system with a high-performance dedicated lob storage system,
suitable for gigabytes of lob data. It is also the only relational database that can create and access large comma
delimited files as SQL tables. HyperSQL supports three live switchable transaction control models, including fully
multi-threaded MV CC, and is suitable for high performance transaction processing applications. HyperSQL is also
suitable for businessintelligence, ETL and other applicationsthat process large data sets. HyperSQL has awiderange
of enterprise deployment options, such as XA transactions, connection pooling data sources and remote authentication.

New SQL syntax compatibility modes have been added to HyperSQL. These modes allow a high degree of
compatibility with several other database systems which use non-standard SQL syntax.

HyperSQL is written in the Java programming language and runs in a Java virtual machine (JVM). It supports the
JDBC interface for database access.

An ODBC driver is aso available as a separate downl oad.

This guide covers the database engine features, SQL syntax and different modes of operation. The Server,
JDBC interfaces, pooling and XA components are documented in the JavaDoc. Utilities such as SglTool and
DatabaseM anager are covered in a separate Utilities Guide.

The HSQLDB Jar

The HSQLDB jar package, hsgldb.jar, is located in the /lib directory of the ZIP package and contains several
components and programs.

Components of the HSQL DB jar package
e HyperSQL RDBMS Engine (HSQLDB)

HyperS@L Running and Using HyperSQL

e HyperSQL JDBC Driver
» Database Manager (GUI database access tool, with Swing and AWT versions)

TheHyperSQL RDBM S and JDBC Driver providethe core functionality. DatabaseM anager Swing is a database access
tool that can be used with any database engine that has a JDBC driver.

An additiona jar, sgltool .jar, contains Sgl Tool, acommand line database accesstool. Thisisacommand line database
access tool that can be used with other database engines as well.

Running Database Access Tools

The access tools are used for interactive user access to databases, including creation of a database, inserting or
modifying data, or querying the database. All tools are run in the normal way for Java programs. In the following
example the Swing version of the Database Manager is executed. The hsql db. j ar islocated in the directory . . /
[i b relative to the current directory.

‘ java -cp ../lib/hsqgldb.jar org.hsqgl db.util.DatabaseManager Swi ng

If hsgl db. j ar isinthe current directory, the command would change to:

‘ java -cp hsqldb.jar org.hsqgldb.util.DatabaseManager Swi ng

Main classes for the HSQL DB tools
e org. hsqgl db. util . Dat abaseManager
e org. hsqgl db. util . Dat abaseManager Swi ng

When atool is up and running, you can connect to a database (may be a new database) and use SQL commands to
access and modify the data.

Tools can use command line arguments. You can add the command line argument --help to get a list of available
arguments for these tools.

Double clicking the HSQLDB jar will start the DatabaseM anagerSwing application.

A HyperSQL Database

Each HyperSQL database is called a catalog. There are three types of catalog depending on how the datais stored.

Types of catalog data

» mem: stored entirely in RAM - without any persistence beyond the VM processs life
« file: storedin filesystem files

* res. stored in aJavaresource, such as a Jar and always read-only

All-in-memory, mem: catal ogs can be used for test data or as sophisticated caches for an application. These databases
do not have any files.

A file: catalog consists of between 2 to 6 files, all named the same but with different extensions, located in the same
directory. For example, the database named "test" consists of the following files:

e test.properties

HyperS@L Running and Using HyperSQL

e test.script

* test.log

test. data

t est. backup
e test.|obs

The propertiesfile contains afew settings about the database. The script file contains the definition of tables and other
database objects, plus the data for memory tables. The log file contains recent changes to the database. The datafile
contains the data for cached tables and the backup file is used to revert to the last known consistent state of the data
file. All thesefilesare essential and should never be deleted. For some catalogs, thet est . dat a andt est . backup
files will not be present. In addition to those files, a HyperSQL database may link to any formatted text files, such
as CSV lists, anywhere on the disk.

While the "test” catalog is open, at est . | og file is used to write the changes made to data. Thisfile is removed at

anormal SHUTDOWN. Otherwise (with abnormal shutdown) thisfileis used at the next startup to redo the changes.
Atest. Il ck fileisalso usedtorecord the fact that the database is open. Thisis deleted at a normal SHUTDOWN.

Note

When the engine closes the database at a shutdown, it creates temporary files with the extension . new
which it then renames to those listed above. These files should not be deleted by the user. At the time of
the next startup, all such fileswill be renamed or deleted by the database engine. In some circumstances,
at est . dat a. xxx. ol d iscreated and deleted afterwards by the database engine. The user can delete
theset est . dat a. xxx. ol d files.

A res. catalog consists of the files for a small, read-only database that can be stored inside a Java resource such as a
ZIP or JAR archive and distributed as part of a Java application program.

In-Process Access to Database Catalogs

In general, JIDBC is used for all access to databases. This is done by making a connection to the database, then using
various methods of thej ava. sql . Connect i on object that is returned to access the data. Accessto an in-process
database is started from JDBC, with the database path specified in the connection URL. For example, if the file:
database nameis"testdb" and itsfiles are located in the same directory as where the command to run your application
was issued, the following code is used for the connection:

‘ Connection ¢ = DriverManager. get Connecti on("jdbc: hsql db: file:testdb", "SA", ""); ‘

The database file path format can be specified using forward slashes in Windows hosts as well as Linux hosts. So
relative paths or paths that refer to the same directory on the same drive can be identical. For exampleif your database
directoryinLinuxis/ opt / db/ cont ai ni ng a dat abase testdb (with fil es naned testdb. *),
then the database file path is /opt/db/testdb. Ifyoucreate anidentical directory structure on
the C. drive of a Windows host, you can use the same URL in both Windows and Linux:

‘ Connection ¢ = DriverManager. get Connecti on("jdbc: hsql db:file:/opt/db/testdb", "SA", ""); ‘

When using relative paths, these paths will be taken relative to the directory in which the shell command to start the
Java Virtual Machine was executed. Refer to the Javadoc for JDBCConnecti on for more details.

Paths and database names for file databases are treated as case-sensitive when the database is created or the first
connection is made to the database. But if a second connection is made to an open database, using a path and name

HyperS@L Running and Using HyperSQL

that differs only in case, then the connection is made to the existing open database. This measure is necessary because
in Windows the two paths are equivalent.

A mem: database is specified by the mem: protocol. For mem: databases, the path is simply a name. Several mem:
databases can exist at the same time and distinguished by their names. In the example below, the database is called
"mymemdb":

‘ Connection ¢ = Driver Manager . get Connection("j dbc: hsql db: nem nymendb”, "SA", ""); ‘

A res: database, is specified by theres: protocol. Asit isaJavaresource, the database pathisaJavaURL (similar to the
path to aclass). In the example below, "resdb” isthe root name of the database files, which existsin the directory "org/
my/path" within the classpath (probably inaJar). A Javaresourceisstored in acompressed format and is decompressed
in memory when it is used. For this reason, ares: database should not contain large amounts of data and is always
read-only.

‘ Connection c = DriverMnager. get Connecti on("jdbc: hsqgl db: res: org. ny. pat h. resdb", "SA", ""); ‘

Thefirst timein-process connection is made to adatabase, some general data structures areinitialised and afew hel per
threads are started. After this, creation of connections and callsto JDBC methods of the connections execute asif they
are part of the Java application that is making the calls. When the SQL command "SHUTDOWN" is executed, the
global structures and helper threads for the database are destroyed.

Note that only one Java process at a time can make in-process connections to a given file: database. However, if the
file: database has been made read-only, or if connections are made to ares: database, then it is possible to make in-
process connections from multiple Java processes.

Server Modes

For most applications, in-process access is faster, as the data is not converted and sent over the network. The main
drawback is that it is not possible by default to connect to the database from outside your application. As a result
you cannot check the contents of the database with external tools such as Database Manager while your application
is running.

Server modes provide the maximum accessibility. The database engine runs in a VM and opens one or more in-
process catalogs. It listens for connections from programs on the same computer or other computers on the network.
It translates these connections into in-process connections to the databases.

Several different programs can connect to the server and retrieve or updateinformation. Applications programs (clients)
connect to the server using the HyperSQL JDBC driver. In most server modes, the server can servean unlimited number
of databases that are specified at the time of running the server, or optionally, as a connection request is received.

A Sever mode is also the preferred mode of running the database during development. It allows you to query the
database from a separate database access utility while your application is running.

There are three server modes, based on the protocol used for communications between the client and server. They are
briefly discussed below. More details on serversis provided in the HyperSQL Network Listeners (Servers) chapter.

HyperSQL HSQL Server

This is the preferred way of running a database server and the fastest one. A proprietary communications protocol is
used for this mode. A command similar to those used for running tools and described above is used for running the
server. Thefollowing example of the command for starting the server startsthe server with one (default) database with
files named "mydb.*" and the public name of "xdb". The public name hides the file names from users.

‘ java -cp ../lib/hsqgldb.jar org. hsql db. server. Server --database.O file:nydb --dbnane.0 xdb ‘

HyperS@L Running and Using HyperSQL

The command line argument - - hel p can be used to get alist of available arguments.

HyperSQL HTTP Server

This method of access is used when the computer hosting the database server is restricted to the HTTP protocol. The
only reason for using this method of accessis restrictions imposed by firewalls on the client or server machines and it
should not be used wherethere are no such restrictions. The HyperSQL HTTP Server isaspecial web server that allows
JDBC clientsto connect viaHTTP. The server can also act as a small general-purpose web server for static pages.

Torunan HTTP server, replace the main class for the server in the example command line above with the following:

‘ org. hsql db. server. WebSer ver ‘

The command line argument - - hel p can be used to get alist of available arguments.

HyperSQL HTTP Servlet

This method of access also uses the HTTP protocol. It is used when a servlet engine (or application server) such
as Tomcat or Resin provides access to the database. The Servliet Mode cannot be started independently from the
servlet engine. The Ser vl et class, in the HSQLDB jar, should be installed on the application server to provide the
connection. The database file path is specified using an application server property. Refer to the sourcefile src/
org/ hsql db/ server/ Servl et.java toseethedetails.

Both HTTP Server and Servlet modes can be accessed using the JDBC driver at the client end. They do not provide
aweb front end to the database. The Servlet mode can serve multiple databases.

Please note that you do not normally use this mode if you are using the database engine in an application server. In
this situation, connections to a catalog are usually made in-process, or using a separate Server

Connecting to a Database Server

When a HyperSQL server is running, client programs can connect to it using the HSQLDB JDBC Driver contained
in hsql db. j ar. Full information on how to connect to a server is provided in the Java Documentation for
JDBCConnecti on (locatedinthe/ doc/ api docs directory of HSQLDB distribution). A common example is
connection to the default port (9001) used for the hsgl: protocol on the same machine:

Example 1.1. Java code to connect to thelocal hsgl Server

try {
Cl ass. forNane("org. hsqgl db. j dbc. JDBCDri ver");
} catch (Exception e) {
Systemerr.println("ERROR failed to | oad HSQ.DB JDBC driver.");
e.printStackTrace();
return;

}

Connection c¢ = DriverManager. get Connecti on("jdbc: hsqgl db: hsql : //1 ocal host/ xdb", "SA", "");

If the HyperSQL HTTP server is used, the protocol is http: and the URL will be different:

Example 1.2. Java code to connect to the local http Server

‘ Connection c¢ = DriverManager. get Connecti on("jdbc: hsqgl db: http://I1 ocal host/xdb", "SA", ""); ‘

Note in the above connection URL, there is no mention of the database file, as this was specified when running the
server. Instead, the public name defined for dbname.O is used. Also, see the HyperSQL Network Listeners (Servers)
chapter for the connection URL when there is more than one database per server instance.

HyperS@L Running and Using HyperSQL

Security Considerations

When aHyperSQL server isrun, network access should be adequately protected. Source | P addresses may berestricted
by use of our Access Control List feature, network filtering software, firewall software, or standalone firewalls. Only
secure passwords should be used-- most importantly, the password for the default system user should be changed
from the default empty string. If you are purposefully providing datato the public, then the wide-open public network
connection should be used exclusively to access the public data via read-only accounts. (i.e., neither secure data nor
privileged accounts should use this connection). These considerations also apply to HyperSQL servers run with the
HTTP protocol.

HyperSQL provides two optional security mechanisms. The encrypted SSL protocol , and Access Control Lists .
Both mechanisms can be specified when running the Server or WebServer. On the client, the URL to connect to an
SSL server is dlightly different:

Example 1.3. Java code to connect to the local secure SSL hsgls: and https: Servers

Connection ¢
Connection ¢

Dri ver Manager . get Connecti on("j dbc: hsql db: hsql s: / /I ocal host/ xdb", "SA", "");
Dri ver Manager . get Connecti on("j dbc: hsql db: https://I ocal host/xdb", "SA", "");

The security features are discussed in detail in the HyperSQL Network Listeners (Servers) chapter.

Using Multiple Databases

A server can provide connections to more than one database. In the examples above, more than one set of database
names can be specified on the command line. It is also possible to specify all the databasesina. pr operti es filg,
instead of the command line. These capabilities are covered in the HyperSQL Network Listeners (Servers) chapter

Accessing the Data

Asshownsofar,aj ava. sql . Connect i on object isaways used to access the database. But performance depends
on the type of connection and how it is used.

Establishing aconnection and closing it has some overheads, thereforeit is not good practiceto create anew connection
to perform a small number of operations. A connection should be reused as much as possible and closed only when
it is not going to be used again for along while.

Reuse is more important for server connections. A server connection uses a TCP port for communications. Each time
a connection is made, a port is allocated by the operating system and deallocated after the connection is closed. If
many connections are made from a single client, the operating system may not be able to keep up and may refuse
the connection attempt.

Ajava. sql . Connect i on object has some methods that return further j ava. sql . * objects. All these objects
belong to the connection that returned them and are closed when the connection is closed. These objects, listed below,
can be reused. But if they are not needed after performing the operations, they should be closed.

Aj ava. sql . Dat abaseMet aDat a object is used to get metadata for the database.

A java.sqgl.Statenment object is used to execute queries and data change statements. A single
j ava. sgl . St at ement can be reused to execute a different statement each time.

A java. sgl . Prepar edSt at enent object is used to execute a single statement repeatedly. The SQL
statement usually contains parameters, which can be set to new values before each reuse. When a
j ava. sql . Prepar edSt at ement object is created, the engine keeps the compiled SQL statement for
reuse, until the java. sql. PreparedStatenent object is closed. As a result, repeated use of a
j ava. sql . Prepar edSt at ement ismuch faster thanusing aj ava. sql . St at enent object.

HyperS@L Running and Using HyperSQL

A java.sql.Call abl eSt at enent object is used to execute an SQL CALL statement. The SQL
CALL statement may contain parameters, which should be set to new values before each reuse. Similar
to j ava. sql . Prepar edSt at enent, the engine keeps the compiled SQL statement for reuse, until the
j ava. sgl . Cal | abl eSt at enent object isclosed.

Ajava. sqgl . Connect i on object also has some methods for transaction control.
Theconmi t () method performsaCOVM T whilether ol | back() method performsaROLLBACK SQL statement.

The set Savepoi nt (String nane) method performs a SAVEPO NT <nane> SQL statement and returns
aj ava. sql . Savepoi nt object. Ther ol | back(Savepoi nt nane) method performs a ROLLBACK TO
SAVEPO NT <nane> SQL statement.

TheJavadocfor JDBCConnection , JDBCDriver , JDBCDatabaseMetadata JDBCResult Set
, JDBCSt at enent JDBCPr epar edSt at enent list all the supported JDBC methods together with
information that is specific to HSQLDB.

Closing the Database

All databases running in different modes can be closed with the SHUTDOWN command, issued asan SQL statement.

When SHUTDOWN is issued, all active transactions are rolled back. The catalog files are then saved in a form that
can be opened quickly the next time the catalog is opened.

A specia form of closing the database is via the SHUTDOWN COMPACT command. This command rewrites the
. dat a filethat containstheinformation stored in CACHED tablesand compactsit to itsminimum size. Thiscommand
should be issued periodicaly, especialy when lots of inserts, updates, or deletes have been performed on the cached
tables. Changes to the structure of the database, such as dropping or modifying populated CACHED tables or indexes
also create large amounts of unused file space that can be reclaimed using this command.

Databases are not closed when the last connection to the databaseis explicitly closed viaJDBC. A connection property,
shut down=t r ue, can be specified on the first connection to the database (the connection that opens the database)
to force a shutdown when the last connection closes.

Example 1.4. specifying a connection property to shutdown the database when the last
connection isclosed

Connection ¢ = DriverManager. get Connecti on(
"jdbc: hsql db: file:/opt/db/testdb; shutdown=true", "SA", "");

Thisfeature is useful for running tests, where it may not be practical to shutdown the database after each test. But it
is not recommended for application programs.

Creating a New Database

When a server instance is started, or when a connection is made to an in-process database, a new, empty database is
created if no database exists at the given path.

With HyperSQL 2.0 the user name and password that are specified for the connection are used for the new database.
Both the user name and password are case-sensitive. (The exception isthe default SA user, whichisnot case-sensitive).
If no user name or password is specified, the default SA user and an empty password are used.

This feature has a side effect that can confuse new users. If a mistake is made in specifying the path for connecting
to an existing database, a connection is neverthel ess established to a new database. For troubleshooting purposes, you

HyperS@L Running and Using HyperSQL

can specify a connection property ifexists=t r ue to allow connection to an existing database only and avoid creating
anew database. In this case, if the database does not exist, theget Connect i on() method will throw an exception.

Example 1.5. specifying a connection property to disallow creating a new database

Connection c¢ = DriverManager. get Connecti on(
"jdbc: hsql db: file:/opt/db/testdb;ifexists=true", "SA", "");

A database has many optional properties, described in the System Management chapter. You can specify most of
these properties on the URL or in the connection properties for the first connection that creates the database. See the
Properties chapter.

HyperS@L

Chapter 2. SQL Language

Fred Toussi, The HSQL Development Group
$Revision: 6146 $

Copyright 2002-2020 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.

2020-06-29

SQL Standards Support

The SQL language consists of statements for different operations. HyperSQL 2.x supports the dialect of SQL defined
progressively by SO (also ANSI) SQL standards 92, 1999, 2003, 2008, 2011 and 2016. Thismeansthe syntax specified
by the Standard text is accepted for any supported operation. Almost all features of SQL-92 up to Advanced Level
are supported, as well as the additional features that make up the SQL:2016 core and many optional features of this
standard.

At the time of this release, HyperSQL supports the widest range of SQL Standard features among all open source
RDBMS.

Various chapters of this guide list the supported syntax. When writing or converting existing SQL DDL (Data
Definition Language), DML (DataManipulation Language) or DQL (Data Query Language) statementsfor HSQLDB,
you should consult the supported syntax and modify the statements accordingly.

Over 300 words are reserved by the Standard and should not be used as table or column names. For example, the word
POSITION isreserved as it is a function defined by the Standards with asimilar roleas St ri ng. i ndexCf () in
Java. By default, HyperSQL does not prevent you from using a reserved word if it does not support its use or can
distinguish it. For example, CUBE isareserved word for afeature that is supported by HyperSQL from version 2.5.1.
Before this version, CUBE was allowed as a table or column name, but it is no longer allowed. You should avoid
using such names as future versions of HyperSQL are likely to support the reserved words and may reject your table
definitions or queries. The full list of SQL reserved words is in the appendix Lists of Keywords . You can set a
property to disallow the use of reserved keywords for names of tables and other database objects. There are several
other user-defined properties to control the strict application of the SQL Standard in different areas.

If you have to use areserved keyword as the name of a database object, you can enclose it in double quotes.
HyperSQL also supports enhancements with keywords and expressions that are not part of the SQL standard.
ExpressionssuchasSELECT TOP 5 FROM .. ,SELECT LIMT 0 10 FROM. .. or DROP TABLE nyt abl e
| F EXI STS are among such constructs.

Many books cover SQL Standard syntax and can be consulted.

In HyperSQL version 2, all features of JDBC4 that apply to the capabilities of HSQLDB are fully supported. The
relevant JDBC classes are thoroughly documented with additional clarifications and HyperSQL specific comments.

See the JavaDoc for theor g. hsql db. j dbc. * classes.

The following sections list the keywords that start various SQL statements grouped by their function.

HyperS@L SQL Language

Definition Statements (DDL and others)

Definition statements create, modify, or remove database objects. Tables and views are objectsthat contain data. There
are other types of objectsthat do not contain data. These statements are covered in the Schemas and Database Objects
chapter.

CREATE

Followed by { SCHEMA | TABLE | VIEW | SEQUENCE | PROCEDURE | FUNCTION | USER | ROLE | ... }, the
keyword is used to create the database objects.

ALTER
Followed by the same keywords as CREATE, the keyword is used to modify the object.
DROP

Followed by the same keywords as above, the keyword is used to remove the object. If the object contains data, the
datais removed too.

GRANT

Followed by the name of arole or privilege, the keyword assigns arole or gives permissionsto a USER or role.
REVOKE

Followed by the name of arole or privilege, REVOKE isthe opposite of GRANT.

COMMENT ON

Followed by the same keyword as CREATE, the keyword isused to add atext comment to TABLE, VIEW, COLUMN,
ROUTINE, and TRIGGER objects.

EXPLAIN REFERENCES

These keywords are followed by TO or FROM to list the other database objects that reference the given object, or
viceversa.

DECLARE

Thisis used for declaring temporary session tables and variables.

Data Manipulation Statements (DML)

Data manipul ation statements add, update, or delete datain tables and views. These statements are covered inthe Data
Access and Change chapter.

INSERT

Inserts one or more rows into atable or view.
UPDATE

Updates one or more rows in atable or view.

DELETE

10

HyperS@L SQL Language

Deletes one or more rows from atable or view.
TRUNCATE

Deletes al the rowsin atable.

MERGE

Performs a conditional INSERT, UPDATE or DELETE on atable or view using the data given in the statement.

Data Query Statements (DQL)

Data query statements retrieve and combine data from tables and views and return result sets. These statements are
covered in the Data Access and Change chapter.

SELECT

Returns aresult set formed from a subset of rows and columns in one or more tables or views.
VALUES

Returns a result set formed from constant val ues.

WITH ...

This keyword starts a series of SELECT statements that form a query. The first SELECTS act as subqueries for the
final SELECT statement in the same query.

EXPLAIN PLAN

These keywords are followed by the full text of any DQL or DML statement. The result set shows the anatomy of the
given DQL or DML statement, including the indexes used to access the tables.

Calling User Defined Procedures and Functions

CALL

Callsaprocedure or function. Calling afunction can return aresult set or avalue, while calling a procedure can return
one or more result sets and values at the same time. This statement is covered in the SQL-Invoked Routines chapter.

Setting Properties for the Database and the Session

SET
The SET statement has many variations and is used for setting the values of the general properties of the database

or the current session. Usage of the SET statement for the database is covered in the System Management chapter.
Usage for the session is covered in the Sessions and Transactions chapter.

General Operations on Database

General operations on the database include backup, checkpoint, and other operations. These statements are covered
in detail in the System Management chapter.

BACKUP

11

HyperS@L SQL Language

Creates a backup of the database in atarget directory.
PERFORM

Includes commands to export and import SQL scripts from / to the database. Also includes a command to check the
consistency of theindexes.

SCRIPT

Creates a script of SQL statements that creates the database objects and settings.
CHECKPOINT

Saves all the changes to the database up to this point to disk files.

SHUTDOWN

Shuts down the database after saving all the changes.

Transaction Statements

These statements are used in a session to start, end or control transactions. They are covered in the Sessions and
Transactions chapter.

START TRANSACTION

This statement initiates a new transaction with the given transaction characteristics

SET TRANSACTION

Introduces one of more characteristics for the next transaction.

COMMIT

Commits the changes to data made in the current transaction.

ROLLBACK

Rolls back the changes to data made in the current transaction. It is also possible to roll back to a savepoint.
SAVEPOINT

Records a point in the current transaction so that future changes can be rolled back to this point.
RELEASE SAVEPOINT

Releases an existing savepoint.

LOCK

Locks a set of tables for transaction control.

CONNECT

Starts a new session and continues operationsin this session.

DISCONNECT

12

HyperS@L SQL Language

Ends the current session.

Comments in Statements

Any SQL statement can include comments. The comments are stripped before the statement is executed.
SQL styleline comments start with two dashes - - and extend to the end of the line.

C style comments can cover part of the line or multiple lines. They start with / * and end with */ .

SQL Data and Tables

All datais stored in tables. Therefore, creating a database requires defining the tables and their columns. The SQL
Standard supportstemporary tables, which are for temporary datamanaged by each session, and permanent basetabl es,
which are for persistent data shared by different sessions.

A HyperSQL database can bean al-in-memory mem: database with no automatic persistence, or afile-based, persistent
file: database.

Persistent Tables

HyperSQL supports the Standard definition of persistent base table, but defines three types according to the way the
datais stored. These are MEMORY tables, CACHED tables, and TEXT tables.

Memory tablesarethe default typewhenthe CREATE TABLE command isused. Their dataisheld entirely in memory.
In file-based databases, MEMORY tables are persistent and any change to their structure or contents is written to the
. logand. script files. The*. scri pt fileandthe*. | og file are read the next time the database is opened,
and the MEMORY tables are recreated with all the data. This process may take along time if the database is larger
than tens of megabytes. When the database is shutdown, all the datais saved.

CACHED tables are created with the CREATE CACHED TABLE command. Only part of their data or indexes is
held in memory, alowing large tablesthat would otherwise take up to several hundred megabytes of memory. Another
advantage of cached tablesisthat the database engine takes less time to start up when a cached table is used for large
amounts of data. The disadvantage of cached tables is a reduction in speed. Do not use cached tables if your data
set isrelatively small. In an application with some small tables and some large ones, it is better to use the default,
MEMORY mode for the small tables.

TEXT tables use a CSV (Comma Separated Value) or other delimited text file as the source of their data. You can
specify an existing CSV file, such as a dump from another database or program, as the source of a TEXT table.
Alternatively, you can specify an empty file to be filled with data by the database engine. TEXT tables are efficient in
memory usage as they cache only part of the text data and all of the indexes. The Text table data source can always
be reassigned to a different file if necessary. The commands are needed to set up a TEXT table as detailed in the Text
Tables chapter.

With all-in-memory mem: databases, both MEMORY table and CACHED tabledeclarations are treated asdeclarations
for MEMORY tables which last only for the duration of the Java process. In the latest versions of HyperSQL, TEXT
table declarations are allowed in al-in-memory databases.

The default type of tablesresulting from future CREATE TABLE statements can be specified with the SQL command:

| SET DATABASE DEFAULT TABLE TYPE { CACHED | MEMCRY }; |

The type of an existing table can be changed with the SQL command:

| SET TABLE <tabl e name> TYPE { CACHED | MEMORY }; |

13

HyperS@L SQL Language

SQL statements such as INSERT or SELECT access different types of tables uniformly. No change to statementsis
needed to access different types of table.

Temporary Tables

Datain TEMPORARY tablesis not saved and lasts only for the lifetime of the session. The contents of each TEMP
table are visible only from the session that is used to populate it.

HyperSQL supports two types of temporary tables.

The GLOBAL TEMPORARY typeisaschemaobject. It is created with the CREATE GLOBAL TEMPORARY TABLE
statement. The definition of the table persists, and each session has access to the table. But each session seesits own
copy of the table, which is empty at the beginning of the session.

The LOCAL TEMPORARY typeisnot aschemaobject. Itiscreated withthe DECLARE LOCAL TEMPORARY TABLE
statement. The table definition lasts only for the duration of the session and is not persisted in the database. The table
can be declared in the middle of a transaction without committing the transaction. If a schema name is needed to
reference these tables in a given SQL statement, the pseudo schema name SESSI ON can be used.

When the session commits, the contents of all temporary tables are cleared by default. If the table definition statement
includes ON COMMIT PRESERVE ROWS, then the contents are kept when a commit takes place.

The rows in temporary tables are stored in memory by default. If the hsql db. resul t _max_nenory_r ows
property has been set or the SET SESSI ON RESULT MEMORY ROAS <r ow count > has been specified, tables
with row count above the setting are stored on disk.

Short Guide to Data Types

Most other RDBMS do not conform to the SQL Standard in al areas, including data types, but they are gradually
moving towards Standard conformance. When switching from another SQL dialect, the following should be
considered:

* Numerictypes TINYINT, SMALLINT, INTEGER and BIGINT are types with fixed binary precision. These types
are more efficient to store and retrieve. NUMERIC and DECIMAL are types with user-defined decimal precision.
They can be used with zero scaleto store very largeintegers, or with anon-zero scale to store decimal fractions. The
DOUBLE typeisa64-hit, approximate floating point types. HyperSQL even allowsyou to storeinfinity in thistype.

* TheBOOLEAN typeisfor logical valuesand can hold TRUE, FALSE or UNKNOWN. Although HyperSQL allows
you to use one and zero in assignment or comparison, you should use the standard values for this type.

» Character string types are CHAR(L), VARCHAR(L) and CLOB (here, L stands for length parameter, an integer).
CHARisfor fixed width stringsand any string that is assigned to thistypeis padded with spaces at theend. If you use
CHAR without thelength L, thenit isinterpreted asasingle character string. Do not use thistypefor general storage
of strings. Use VARCHAR(L) for general strings. There are only memory limits and performance implications for
the maximum length of VARCHAR(L). If the strings are larger than a few kilobytes, consider using CLOB. The
CLOB typesis a better choice for very long strings. Do not use this type for short strings as there are performance
implications. By default LONGVARCHAR isasynonym for along VARCHAR and can be used without specifying
the size. You can set LONGVARCHAR to mapto CLOB, withthesql . | ongvar _i s_| ob connection property
or the SET DATABASE SQL LONGVAR ISLOB TRUE statement.

 Binary string types are BINARY (L), VARBINARY (L) and BLOB. Do not use BINARY (L) unless you are storing
fixed length strings such as UUID. Thistype pads short binary strings with zero bytes. BINARY without the length
L means asingle byte. Use VARBINARY (L) for general binary strings, and BLOB for large binary objects. You
should apply the same considerations as with the character string types. By default, LONGVARBINARY is a
synonym for along VARBINARY and can be used without specifying the size. Y ou can set LONGVARBINARY to

14

HyperS@L SQL Language

map to BLOB, withthesql . | ongvar _i s_| ob connection property or the SET DATABASE SQL LONGVAR
IS LOB TRUE statement.

* TheBIT(L) and BITVARYING(L) types arefor bit maps. Do not use them for other types of data. BIT without the
length L argument means asingle bit and is sometimes used as alogical type. Use BOOLEAN instead of thistype.

» The UUID typeisfor UUID (also called GUID) values. The value is stored as BINARY . UUID character strings,
aswell as BINARY strings, can be used to insert or to compare.

e The datetime types DATE, TIME, and TIMESTAMP, together with their WITH TIME ZONE variations are
available. Read the detailsin this chapter on how to use these types.

* TheINTERVAL typeisvery powerful when used together with the datetime types. Thisis very easy to use, but is
supported mainly by enterprise database systems. Note that functions that add days or monthsto datetime values are
not really asubstitutefor the INTERVAL type. Expressionssuch as(dat ecol - 7 DAY) > CURRENT_DATE
are optimised to use indexes when it is possible, while the equivalent function calls are not optimised.

» The OTHER type is for storage of Java objects. If your objects are large, serialize them in your application and
store them as BLOB in the database.

e The ARRAY type supportsall base types except LOB and OTHER types. ARRAY data objects are held in memory
while being processed. It is therefore not recommended to store more than about a thousand objectsin an ARRAY
in normal operations with disk-based databases. For specialised applications, use ARRAY with as many elements
as your memory allocation can support.

HyperSQL 2.5 has several compatibility modes which alow the type names that are used by other RDBMS to be
accepted and trandlated into the closest SQL Standard type. For example, the type TEXT, supported by MySQL and
PostgreSQL is trandated in these compatibility modes.

Data Types and Operations

HyperSQL supports all the types defined by SQL-92, plus BOOLEAN, BINARY, ARRAY and LOB typesthat were
later added to the SQL Standard. It also supports the non-standard OTHER type to store serializable Java objects.

SQL isastrongly typed language. All data stored in specific columns of tables and other objects (such as sequence
generators) have specific types. Each dataitem conformsto the type limits such as precision and scale for the column. It
also conformsto any additional integrity constraintsthat are defined as CHECK constraintsin domainsor tables. Types
can be explicitly converted using the CAST expression, but in most expressions, they are converted automatically.

Data is returned to the user (or the application program) as a result of executing SQL statements such as query
expressions or function calls. All statements are compiled prior to execution and the return type of the data is known
after compilation and before execution. Therefore, once a statement is prepared, the data type of each column of the
returned result is known, including any precision or scale property. The type does not change when the same query
that returned one row, returns many rows as aresult of adding more data to the tables.

Some SQL functions used within SQL statements are polymorphic, but the exact type of the argument and the return
value is determined at compile time.

When a statement is prepared, using a JDBC PreparedStatement object, it is compiled by the engine and the type of
the columns of its ResultSet and / or its parameters are accessible through the methods of PreparedStatement.

Numeric Types

TINYINT, SMALLINT, INTEGER, BIGINT, NUMERIC and DECIMAL (without adecimal point) are the supported
integral types. They correspond respectively to byt e, short,i nt, | ong, Bi gDeci mal and Bi gDeci nal Java
types in the range of values that they can represent (NUMERIC and DECIMAL are equivaent). Thetype TINYINT

15

HyperS@L SQL Language

isan HSQLDB extension to the SQL Standard, while the others conform to the Standard definition. The SQL type
dictates the maximum and minimum values that can be held in a field of each type. For example the value range for
TINYINT is-128to +127. Thebit precision of TINYINT, SMALLINT, INTEGER and BIGINT isrespectively 8, 16,
32 and 64. For NUMERIC and DECIMAL, decimal precision is used.

DECIMAL and NUMERIC with decimal fractions are mapped to j ava. mat h. Bi gDeci mal and can have very
large numbers of digits. In HyperSQL thetwo types are equival ent. Thesetypes, together with integral types, arecalled
exact numeric types.

In HyperSQL, REAL, FLOAT and DOUBLE are equivalent: they are all mapped to doubl e in Java. Thesetypes are
defined by the SQL Standard as approximate numeric types. The bit-precision of all these typesis 64 bits.

The decima precision and scale of NUMERIC and DECIMAL types can be optionally defined. For example,
DECIMAL(10,2) means maximum total number of digitsis 10 and there are always 2 digits after the decimal point,
while DECIMAL (10) means 10 digits without a decimal point. The bit-precision of FLOAT can be defined but it is
ignored and the default bit-precision of 64 is used. The default precision of NUMERIC and DECIMAL (when not
defined) is 100.

Note: If adatabase hasbeen set to ignoretype precision limitswiththe SET DATABASE SQL SIZE FAL SE command,
then atype definition of DECIMAL with no precision and scaleistreated as DECIMAL(128,32). In normal operation,
itistreated as DECIMAL (128).

Integral Types

Inexpressions, valuesof TINYINT, SMALLINT, INTEGER, BIGINT, NUMERIC and DECIMAL (without adecimal
point) types can befreely combined and no data narrowing takes place. Theresulting valueis of atypethat can support
all possible values.

If the SELECT statement refers to a simple column or function, then the return type is the type corresponding to the
column or the return type of the function. For example:

CREATE TABLE t(a | NTEGER b Bl G NT);
SELECT MAX(a), MAX(b) FROMt:

will return aResul t Set where the type of the first columnisj ava. | ang. | nt eger and the second column is
j ava. | ang. Long. However,

| SELECT MAX(a) + 1, MAX(b) + 1 FROMt; |

will return j ava. | ang. Long and Bi gDeci mal values, generated as a result of uniform type promation for all
possible return values. Note that type promotion to Bi gDeci mal ensures the correct value is returned if MAX(b)
evaluatesto Long. MAX VALUE.

Thereisno built-in limit on the size of intermediate integral values in expressions. As aresult, you should check for
thetype of theResul t Set column and choose an appropriate get XXXX() method to retrieveit. Alternatively, you
can use the get Cbj ect () method, then cast the result to j ava. | ang. Nunber and use the i nt Val ue() or
| ongVal ue() methods on the result.

When the result of an expression is stored in acolumn of adatabasetable, it hastofit in thetarget column, otherwise an
error isreturned. For example, when 1234567890123456789012 / 12345687901234567890 isevauated,
the result can be stored in any integral type column, even a TINYINT column, asitisasmall value.

In SQL Statements, an integer literal istreated as INTEGER, unless its value does not fit. In this caseit is treated as
BIGINT or DECIMAL, depending on the value.

Depending on the types of the operands, the result of the operation is returned in a JDBC Resul t Set in any of
therelated Javatypes: | nt eger, Long or Bi gDeci mal . TheResul t Set . get XXXX() methods can be used to

16

HyperS@L SQL Language

retrieve the values so long as the returned val ue can be represented by the resulting type. Thistypeisdeterministically
based on the query, not on the actual rows returned.

Other Numeric Types

In SQL statements, number literals with a decimal point are treated as DECIMAL unless they are written with an
exponent. Thus 0. 2 isconsidered a DECIMAL value but 0. 2EQ is considered a DOUBLE value.

When an approximate numeric type, REAL, FLOAT or DOUBLE (all synonymous) is part of an expression involving
different numeric types, the type of the result is DOUBLE. DECIMAL values can be converted to DOUBLE unless
they are beyond the Doubl e. M N_VALUE - Doubl e. MAX_VALUE range. For example, A * B, A/ B, A + B,
etc. will return aDOUBLE valueif either A or BisaDOUBLE.

Otherwise, when no DOUBLE value exists, if aDECIMAL or NUMERIC vaueis part an expression, the type of the
result is DECIMAL or NUMERIC. Similar to integral values, when the result of an expression is assigned to atable
column, the value has to fit in the target column, otherwise an error is returned. This means a small, 4 digit value of
DECIMAL type can be assigned to a column of SMALLINT or INTEGER, but avalue with 15 digits cannot.

WhenaDECIMAL valueismultiplied by aDECIMAL or integral type, theresulting scaleisthe sum of the scalesof the
two terms. When they are divided, the result is avalue with ascale (number of digitsto the right of the decimal point)
equal to the larger of the scales of the two terms. The precision for both operations is calculated (usually increased)
to alow all possible results.

Thedistinction between DOUBLE and DECIMAL isimportant when adivision takes place. For example, 10. 0/ 8. 0
(DECIMAL) equals 1. 2 but 10. OEO/ 8. OEO (DOUBLE) eguals 1. 25. Without division operations, DECIMAL
values represent exact arithmetic.

REAL, FLOAT and DOUBLE values are all stored in the database as j ava. | ang. Doubl e objects. Special
values such as NaN and +-Infinity are also stored and supported. These values can be submitted to the database
via JDBC Pr epar edSt at ement methods and are returned in Resul t Set objects. In order to alow division
by zero of DOUBLE values in SQL statements (which returns NaN or +-Infinity) you should set the property
hsgldb.double nan as false (SET DATABASE SQL DOUBLE NAN FALSE). The double values can be retrieved
from a Resul t Set in the required type so long as they can be represented. For setting the values, when
Pr epar edSt at enent . set Doubl e() orset Fl oat () isused, thevalueistreated asaDOUBLE automatically.

In short,
<nuneric type> ::= <exact nuneric type> | <approxinmate nuneric type>
<exact numeric type> ::= NUMERIC [<left paren> <precision>][<conma> <scal e>]

<right paren>] | { DECIMAL | DEC} [<l eft paren> <preci sion>[<conma> <scal e>]
<right paren>1] | SMALLINT | INTEGER | INT | BIG NT

<approxi mate nuneric type> ::= FLOAT [<left paren> <precision> <right paren>]
| REAL | DOUBLE PRECI SI ON

<precision> ::= <unsigned integer>

<scal e> ::= <unsi gned integer>

Boolean Type

The BOOLEAN type conforms to the SQL Standard and represents the values TRUE, FALSE and UNKNOAN. This
type of column can be initialised with Java boolean values, or with NULL for the UNKNOWN value.

Thethree-value logic is sometimes misunderstood. For example, x IN (1, 2, NULL) does not return trueif x isNULL.

17

HyperS@L SQL Language

In previous versions of HyperSQL, BIT was simply an alias for BOOLEAN. In version 2, BIT isasingle-bit bit map.
<bool ean type> ::= BOOLEAN

The SQL Standard does not support type conversion to BOOLEAN apart from character stringsthat consists of boolean
literals. Because the BOOLEAN typeisrelatively new to the Standard, several database products used other typesto
represent boolean values. For improved compatibility, HyperSQL allows some type conversions to bool ean.

Vauesof BIT and BIT VARYING types with length 1 can be converted to BOOLEAN. If the bit is set, the result of
conversion isthe TRUE value, otherwiseit is FALSE.

Vauesof TINYINT, SMALLINT, INTEGER and BIGINT types can be converted to BOOLEAN. If the valueis zero,
the result isthe FAL SE value, otherwise it is TRUE.

Character String Types

The CHARACTER, CHARACTER VARYING and CLOB types are the SQL Standard character string types.
CHAR, VARCHAR and CHARACTER LARGE OBJECT are synonyms for these types. HyperSQL also supports
LONGVARCHAR as a synonym for VARCHAR. If LONGVARCHAR is used without a length, then a length of
16M is assigned. You can set LONGVARCHAR to map to CLOB, with thesqgl . | ongvar _i s_| ob connection
property or the SET DATABASE SQL LONGVAR ISLOB TRUE statement..

HyperSQL 'sdefault character set is Unicode, therefore all possible character strings can be represented by these types.

The SQL Standard behaviour of the CHARACTER typeisaremnant of legacy systemsin which character strings are
padded with spaces to fill afixed width. These spaces are sometimes significant while in other cases they are silently
discarded. It would be best to avoid the CHARACTER type altogether. With the rest of the types, the strings are not
padded when assigned to columns or variables of the given type. The trailing spaces are still considered discardable
for al character types. Therefore, if a string with trailing spaces is too long to assign to a column or variable of a
given length, the spaces beyond the type length are discarded and the assignment succeeds (provided all the characters
beyond the type length are spaces).

The VARCHAR and CLOB types have length limits, but the strings are not padded by the system. Note that if you
use a large length for a VARCHAR or CLOB type, no extra space is used in the database. The space used for each
stored item is proportional to its actual length.

If CHARACTER is used without specifying the length, the length defaults to 1. For the CLOB type, the length limit
can be defined in units of kilobyte (K, 1024), megabyte (M, 1024 * 1024) or gigabyte (G, 1024 * 1024 * 1024), using
the<mul ti pl i er>. 1f CLOB isused without specifying the length, the length defaultsto 1GB.

<character string type> ::= { CHARACTER | CHAR } [<left paren> <character
| engt h> <right paren>] | { CHARACTER VARYI NG | CHAR VARYING | VARCHAR } <left
paren> <character |ength> <right paren> | LONGVARCHAR [<l eft paren> <character
| engt h> <right paren>] | <character |arge object type>

<character large object type> ::= { CHARACTER LARGE OBJECT | CHAR LARGE OBJECT
| CLOB } [<left paren> <character |arge object |ength> <right paren>]
<character length> ::= <unsigned integer> [<char length units>]

<l arge object length>::=<length>[<nultiplier>] | <large object | ength token>
<character | arge object |l ength> ::= <large object length>[<char |l ength units>]
<l arge object length token> ::= <digit> .. <multiplier>

<multiplier> ::= K| M| G

18

HyperS@L SQL Language

<char length units> ::= CHARACTERS | OCTETS

Each character type has a collation. Thisis either a default collation or stated explicitly with the COLLATE clause.
Collations are discussed in the Schemas and Database Objects chapter.

CHAR(10)

CHARACTER(10)

VARCHAR(2)

CHAR VARYI N&(2)

CLOB(1000)

CLOB(30K)

CHARACTER LARGE OBJECT(1M
LONGVARCHAR

Binary String Types

The BINARY, BINARY VARYING and BLOB types are the SQL Standard binary string types. VARBINARY
and BINARY LARGE OBJECT are synonyms for BINARY VARYING and BLOB types. HyperSQL also supports
LONGVARBINARY asasynonym for VARBINARY. You can set LONGVARBINARY to map to BLOB, with the
sql . I ongvar _i s_| ob connection property or the SET DATABASE SQL LONGVAR ISLOB TRUE statement.

Binary string types are used in a similar way to character string types. There are several built-in functions that are
overloaded to support character, binary and bit strings.

The BINARY type represents a fixed width-string. Each shorter string is padded with zeros to fill the fixed width.
Similar to the CHARACTER type, the trailing zerosin the BINARY string are simply discarded in some operations.
For the same reason, it is best to avoid this particular type and use VARBINARY instead.

When two binary values are compared, if oneisof BINARY type, then zero padding is performed to extend the length
of the shorter string to the longer one before comparison. No padding is performed with other binary types. If the bytes
compare equal to the end of the shorter value, then the longer string is considered larger than the shorter string.

If BINARY is used without specifying the length, the length defaults to 1. For the BLOB type, the length limit can
be defined in units of kilobyte (K, 1024), megabyte (M, 1024 * 1024) or gigabyte (G, 1024 * 1024 * 1024), using the
<mul ti plier>.1f BLOB isused without specifying the length, the length defaults to 1GB.

The UUID type represents a UUID string. The type is similar to BINARY(16) but with the extra
enforcement that disallows assigning, casting, or comparing with shorter or longer strings. Strings such as
'24ff1824-01e8-4dac-8eb3-3fee32ad2b9c' or '24ff182401e84dac8eb33fee32ad2b9c are allowed. When avaue of the
UUID type is converted to a CHARACTER type, the hyphens are inserted in the required positions. Java UUID
objects can be used withj ava. sql . Pr epar edSt at enent to insert values of thistype. The getObject() method
of ResultSet returns the Java object for UUID column data.

<binary string type>::=BINARY [<left paren> <l ength> <right paren>] | { Bl NARY
VARYI NG | VARBI NARY } <l eft paren> <l ength> <right paren>| LONGVARBI NARY [<l eft
paren> <l ength> <right paren>] | U D | <binary |large object string type>

<binary large object string type> ::= { BINARY LARGE OBJECT | BLOB } [<left
paren> <l arge object |ength> <right paren>]

<l engt h> :: = <unsi gned i nteger>

Bl NARY(10)

VARBI NARY(2)

Bl NARY VARYI N& 2)

BLOB(1000)

BLOB(30G)

Bl NARY LARGE OBJECT(1M
LONGVARBI NARY

19

HyperS@L SQL Language

Bit String Types

The BIT and BIT VARYING types are the supported bit string types. These types were defined by SQL:1999 but
were |later removed from the Standard. Bit types represent bit maps of given lengths. Each bitisO or 1. The BIT type
represents a fixed width-string. Each shorter string is padded with zeros to fill the fixed with. If BIT is used without
specifying the length, the length defaults to 1. The BIT VARYING type has a maximum width and shorter strings
are not padded.

Before the introduction of the BOOLEAN type to the SQL Standard, a single-bit string of the type BIT(1) was
commonly used. For compatibility with other productsthat do not conformto, or extend, the SQL Standard, HyperSQL
allows values of BIT and BIT VARYING types with length 1 to be converted to and from the BOOLEAN type.
BOOLEAN TRUE is considered equal to B'1', BOOLEAN FALSE is considered equal to B'0'.

For the same reason, numeric values can be assigned to columns and variables of the type BIT(1). For assignment, the
numeric value zero is converted to B'0', while all other values are converted to B'1'. For comparison, numeric values
lisconsidered equal to B'1' and numeric value zero is considered equal to B'0'.

Itis not allowed to perform other arithmetic or boolean operationsinvolving BIT(1) and BIT VARYING(1). Thekid
of operations alowed on bit strings are analogous to those allowed on BINARY and CHARACTER strings. Severd
built-in functions support all three types of string.

<bit string type> ::=BIT [<left paren> <length> <right paren>] | BIT VARYI NG
<l eft paren> <l ength> <right paren>

BI T

BI T(10)

BI T VARYI NG 2)

Lob Data

BLOB and CLOB arelab types. These types are used for very long strings that do not necessarily fit in memory. Small
lobs that fit in memory can be accessed just like BINARY or VARCHAR column data. But lobs are usually much
larger and therefore accessed with special JDBC methods.

Toinsert alobinto atable, or to update a column of lob type with anew lob, you can usetheset Bi nar ySt r ean()
and set Char act er St r ean() methodsof JDBCj ava. sql . Prepar edSt at ement . These are very efficient
methodsfor long lobs. Other methods are al so supported. If thedatafor the BLOB or CL OB isalready amemory object,
you can use the set Byt es() or set Stri ng() methods, which are efficient for memory data. Another method
isto obtain alob with the get Bl ob() and get C ob() methodsof j ava. sqgl . Connect i on, populateits data,
thenusetheset Bl ob() orset C ob() methodsof Pr epar edSt at enent . Y et another method allowsto create
instances of or g. hsql db. j dbc. JDBCBI obFi | e andor g. hsql db. j dbc. JDBCC obFi | e and construct a
large lob for usewith set Bl ob() andset C ob() methods.

A lob isretrieved from a ResultSet with the get Bl ob() or get G ob() method. The steaming methods of the lob
objects are then used to access the data. HyperSQL also allows efficient access to chunks of lobswith get Byt es()
or get String() methods. Furthermore, parts of a BLOB or CLOB aready stored in a table can be modified.
An updatable Resul t Set is used to select the row from the table. The get Bl ob() or get C ob() methods of
Resul t Set are used to accessthe lob asaj ava. sql . Bl ob or j ava. sql . Cl ob object. The set Byt es()
and set St ri ng() methods of these objects can be used to modify the lob. Finally the updat eRow() method of
the Resul t Set isused to update the lob in the row. Note these modifications are not allowed with compressed or
encrypted lobs.

Lobs are logically stored in columns of tables. Their physical storage is a separate *.lobs file. Thisfile is created as
soon asaBLOB or CLOB isinserted into the database. The file will grow as new lobs are inserted into the database.
Inversion 2, the *.lobs fileis never deleted even if al lobs are deleted from the database. In this case you can delete

20

HyperS@L SQL Language

the *.lobs file after a SHUTDOWN. When a CHECKPOINT happens, the space used for deleted lobs is freed and
is reused for future lobs. By default, clobs are stored without compression. Y ou can use a database setting to enable
compression of clobs. This can significantly reduce the storage size of clobs.

Storage and Handling of Java Objects

From version 2.3.4 there are two options for storing Java Objects.

The default option allows storing Serializable object. The objects remain serialized inside the database until they are
retrieved. The application program that retrieves the object must include in its classpath the Java Class for the object,
otherwise it cannot retrieve the object.

Any seridizable Java Object can be inserted directly into a column of type OTHER using any variation of
Pr epar edSt at enent . set Obj ect () methods.

The aternative Live Object option is for mem: databases only and is enabled when the database property
sgl.live_object=true is appended to the connection property that creates the mem database. For example
"jdbc: hsgl db: mem nydb; sql . | i ve_obj ect =t r ue' . With this option, any Java object can be stored asit
isnot serialized. The SQL statement SET DATABASE SQL LI VE OBJECT TRUE can be also used. Note the SQL
statement must be executed on the first connection to the database before any datais inserted. No data access should
be made from this connection. Instead, new connections should be used for data access.

For comparison purposes and in indexes, any two Java Objects are considered equal unless one of themisNULL. You
cannot search for a specific object or perform ajoin on a column of type OTHER.

Java Objects can simply be stored internally and no operations can be performed on them other than assignment
between columns of type OTHER or checking for NULL. Tests such as WHERE obj ect1 = object2 donot
mean what you might expect, as any non-null object would satisfy such a tests. But WHERE obj ect1l IS NOT
NULL is perfectly acceptable.

The engine does not alow normal column values to be assigned to Java Object columns (for example, assigning an
INTEGER or STRING to such a column with an SQL statement such as UPDATE nyt abl e SET obj ect col
= intcol WHERE ...).

<j ava object type> ::= OTHER

The default method of storage is used when the objects and their state needs to be saved and retrieved in the future.
This method is also used when memory resources are limited and collections of objects are stored and retrieved only
when needed.

The Live Object option uses the database table as a collection of objects. This allows storing some attributes of the
objects in the same table alongside the object itself and fast search and retrieval of objects on their attributes. For
example, when many thousands of live objects contain details of films, the film title and the director can be stored in
the table and searches can be performed for films on these attributes:

CREATE TABLE novi es (director VARCHAR(30), title VARCHAR(40), obj OTHER)
SELECT obj FROM novi es WHERE director LIKE 'Luc%

In any case, at least one attribute of the object should be stored to alow efficient retrieval of the objects from both
Live Object and Serialized storage. An 1D number is often used as the stored column attribute.

Type Length, Precision and Scale

In HyperSQL, column length, precision and scale qualifiers are required and are always enforced. The VARCHAR
and VARBINARY types require a size parameter and do not have a default. For compatibility with CREATE
TABLE statements from other databases that do not have size parameters for VARCHAR column, the URL property

21

HyperS@L SQL Language

hsql db. enf or ce_si ze=f al se or the SQL statement SET DATABASE SQL S| ZE FALSE can be used to
allow the table creation and automatically apply alarge value for the maximum size of the VARCHAR column. You
should test your application to ensure the length, precision and scale that is used for column definitions is appropriate
for the application data.

All other types have defaults for size or precision parameters. However, the defaults may not be what your application
requires and you may have to specify the parameters.

String types, including @l BIT, BINARY and CHAR string types plus CLOB and BLOB, are generally defined with
alength. If no length is specified for BIT, BINARY and CHAR, the default length is 1. For CLOB and BLOB an
implementation defined length of 1M is used.

TIME and TIMESTAMP types can be defined with afractional second precision between 0 and 9. INTERVAL type
definition may have precision and, in some cases, fraction second precision. DECIMAL and NUMERIC types may be
defined with precision and scale. For al of these types a default precision or scale valueisused if oneis not specified.
The default scaleis 0. The default fractional precision for TIME is O, whileitis 6 for TIMESTAMP.

Vaues can be converted from one type to another in two different ways: by using explicit CAST expression or by
implicit conversion used in assignment, comparison, and aggregation.

String values cannot be assigned to VARCHAR columns if they are longer than the defined type length. For
CHARACTER columns, along string can be assigned (with truncation) only if all the characters after the length are
spaces. Shorter strings are padded with the space character when inserted into a CHARACTER column. Similar rules
are applied to VARBINARY and BINARY columns. For BINARY columns, the padding and truncation rules are
applied with zero bytes, instead of spaces.

Explicit CAST of avaluetoaCHARACTER or VARCHAR typewill result in forced truncation or padding. So atest
suchasCAST (nycol AS VARCHAR(2)) = 'xy' will findthevaluesbeginning with 'xy'. Thisisthe equivalent
of SUBSTRI N nycol FROM 1 FOR 2)= 'xy'.

For al numeric types, the rules of explicit cast and implicit conversion are the same. If cast or conversion causes any
digitsto belost from the fractional part, it can take place. If the non-fractional part of the value cannot be represented
in the new type, cast or conversion cannot take place and will result in a data exception.

There are specia rulesfor DATE, TIME, TIMESTAMP and INTERVAL casts and conversions.

Datetime types

HSQLDB fully supports datetime and interval types and operations, including all relevant optiona features, as
specified by the SQL Standard since SQL-92. The two groups of types are complementary.

The DATE type represents a calendar date with YEAR, MONTH and DAY fields.

The TIME type represents time of day with HOUR, MINUTE and SECOND fields, plus an optiona SECOND
FRACTION field.

The TIMESTAMP type represents the combination of DATE and TIME types.

TIME and TIMESTAMP types can include WITH TIME ZONE or WITHOUT TIME ZONE (the default) qualifiers.
They can have fractional second parts. For example, TIME(6) has six fractional digits for the second field.

If fractional second precision is not specified, it defaultsto O for TIME and to 6 for TIMESTAMP.

<datetine type> ::= DATE | TIME [<left paren> <tinme precision> <right paren>]
[<with or without tinme zone>] | TIMESTAMP [<l eft paren> <tinestanp precision>
<right paren>] [<with or without tinme zone>]

22

HyperS@L SQL Language

<with or without time zone> ::= WTH TIME ZONE | W THOUT TI ME ZONE
<time precision> ::= <time fractional seconds precision>
<timestanmp precision> ::= <time fractional seconds precision>
<time fractional seconds precision> ::= <unsigned integer>

DATE

TI MVE(6)

TI MESTAMP(2) W TH TI ME ZONE

TIME or TIMESTAMP litera s containing a zone displacement value are WITH TIME ZONE. Examples of the string
literals used to represent date time values, some with time zone, some without, are below:

DATE ' 2008- 08- 22"

TI MESTAWP ' 2008- 08- 08 20: 08: 08’

TI MESTAVP ' 2008- 08- 08 20: 08: 08+8: 00" /* Beijing */
TI ME ' 20: 08: 08. 034900’

TI ME ' 20: 08: 08. 034900-8: 00" /* US Pacific */

TimeZone

DATE values do not take time zones. For example, United Nations designates 5 June as World Environment Day,
which was observed on DATE '2008-06-05' in different time zones.

TIME and TIMESTAMP values without time zone, usually have a context that indicates some local time zone. For
example, a database for college course timetables usually stores class dates and times without time zones. This works
because the location of the collegeisfixed and the time zone displacement isthe samefor all the values. Even when the
events take place in different time zones, for example international flight times, it is possible to store al the datetime
information as references to a single time zone, usually GMT. For some databases it may be useful to store the time
zone displacement together with each datetime value. SQL’s TIME WITH TIME ZONE and TIMESTAMP WITH
TIME ZONE values include a time zone displacement value.

The time zone displacement is of the type INTERVAL HOUR TO MINUTE. This data type is described in the next
section. The legal values are between '-18:00' and '+18:00'.

Operations on Datetime Types

Theexpression<dat et i me expressi on> AT Tl ME ZONE <t i ne di spl acenment > evaluatesto adatetime
value representing exactly the same point of time in the specified <t i me di spl acenent >. The expression, AT
LOCAL isequivalentto AT TI ME ZONE <l ocal tine displacenent>. If AT TI ME ZONE is used with
a datetime operand of type WITHOUT TIME ZONE, the operand is first converted to a value of type WITH TIME
ZONE at the session’ stime displacement, then the specified time zone displacement is set for the value. Therefore, in
these cases, the final value depends on the time zone of the session in which the statement was used.

AT TIME ZONE, modifies the field values of the datetime operand. Thisis done by the following procedure:
1. determine the corresponding datetime at UTC.
2. find the datetime value at the given time zone that corresponds with the UTC value from step 1.

Example a

\ TIME ' 12: 00: 00' AT TIME ZONE | NTERVAL ' 1: 00' HOUR TO M NUTE \

If the session’ stime zone displacement is-'8:00', thenin step 1, TIME '12:00:00' is converted to UTC, whichis TIME
'20:00:00+0:00'. In step 2, thisvalue is expressed as TIME '21:00:00+1:00'".

23

HyperS@L SQL Language

Example b:

‘ TIME ' 12: 00: 00-5: 00" AT TI ME ZONE | NTERVAL ' 1: 00" HOUR TO M NUTE ‘

Because the operand has a time zone, the result is independent of the session time zone displacement. Step 1 results
in TIME '17:00:00+0:00', and step 2 resultsin TIME '18:00:00+1:00'

Note that the operand is not limited to datetime literals used in these examples. Any valid expression that evaluates
to a datetime value can be the operand.

Type Conversion

CAST isused for all other conversions. Examples:

CAST (<val ue> AS TI ME W THOUT TI ME ZONE)
CAST (<val ue> AS TIME WTH TI ME ZONE)

Inthefirst example, if <val ue> hasatime zone component, itissimply dropped. For example, TIME '12:00:00-5:00'
is converted to TIME '12:00:00'

In the second example, if <val ue> has no time zone component, the current time zone displacement of the sessionis
added. For example, TIME '12:00:00' is converted to TIME '12:00:00-8:00" when the session time zone displacement
is'-8:00'

Conversion between DATE and TIMESTAMP is performed by removing the TIME component of a TIMESTAMP
value or by setting the hour, minute and second fields to zero. TIMESTAMP '2008-08-08 20:08:08+8:00' becomes
DATE '2008-08-08', while DATE '2008-08-22' becomes TIMESTAMP '2008-08-22 00:00:00'.

Conversion between TIME and TIMESTAMP is performed by removing the DATE field values of a TIMESTAMP
value or by appending the fields of the TIME value to the fields of the current session date value.

Assignment

When avalueisassigned to adatetime target, e.g., avalueis used to update arow of atable, the type of the value must
be the same as the target, but the WITH TIME ZONE or WITHOUT TIME ZONE characteristics can be different. If
the types are not the same, an explicit CAST must be used to convert the value into the target type.

Comparison

When values WITH TIME ZONE are compared, they are converted to UTC values before comparison. If a value
WITH TIME ZONE iscompared to another WITHOUT TIME ZONE, thenthe WITH TIME ZONE valueisconverted
to AT LOCAL, then converted to WITHOUT TIME ZONE before comparison.

It is not recommended to design applications that rely on comparisons and conversions between TIME values WITH
TIME ZONE. The conversions may involve normalisation of the time value, resulting in unexpected results. For
exampl e, theexpression: BETWEEN(TIME '12:00:00-8:00', TIME '22:00:00-8:00") isconverted to BETWEEN(TIME
'20:00:00+0:00', TIME '06:00:00+0:00) when it is evaluated in the UTC zone, which is always FALSE.

Functions

Severa functions return the current session timestamp in different datetime types:

CURRENT_DATE DATE
CURRENT_TIME TIMEWITH TIME ZONE
CURRENT_TIMESTAMP TIMESTAMPWITH TIME ZONE

24

HyperS@L SQL Language

LOCALTIME TIMEWITHOUT TIME ZONE

LOCALTIMESTAMP TIMESTAMPWITHOUT TIME ZONE

HyperSQL supports a very extensive range of functions for conversion, extraction and manipulation of DATE and
TIMESTAMP values. See the Built In Functions chapter.

Session Time Zone Displacement

When an SQL session is started (with a JDBC connection) the local time zone of the client VM (including any
seasonal time adjustments such as daylight-saving time) is used as the session time zone displacement. Note that the
SQL session time displacement is not changed when a seasonal time adjustment takes place while the session is open.
To change the SQL session time zone displacement, use the following commands:

SET TI ME ZONE <tinme di spl acenent >
SET TI ME ZONE LOCAL

Thefirst command sets the displacement to the given value. The second command restores the original, real time zone
displacement of the session.

Datetime Values and Java

When datetime values are sent to the database using the Pr epar edSt at enent or Cal | abl eSt at enent
interfaces, the Java object is converted to the type of the prepared or callable statement parameter. This type may
be DATE, TIME, or TIMESTAMP (with or without time zone). The time zone displacement is the time zone of the
JDBC session.

When datetime values are retrieved from the database using the Resul t Set interface, there are two representations.
Theget St ri ng(..) methods of the Resul t Set interface, return an exact representation of the value in the SQL
type as it is stored in the database. This includes the correct number of digits for the fractional second field, and
for values with time zone displacement, the time zone displacement. Therefore, if TIME '12:00:00' is stored in the
database, all usersin different timezoneswill get '12:00:00" when they retrievethevalueasastring. Theget Ti ne(..)

and get Ti nest anp(..) methodsof theResul t Set interface return Java objectsthat are corrected for the session
time zone. The UTC millisecond value contained the j ava. sql . Ti me or j ava. sql . Ti nest anp objects will
be adjusted to the time zone of the session, thereforethet oSt ri ng() method of these objectsreturn the same values
in different time zones.

If you want to store and retrieve UTC values that are independent of any session's time zone, you can use a
TIMESTAMP WITH TIME ZONE column. The set Ti me(...) and set Ti mest anp(...) methods of the
PreparedStatement interface which have a Calendar parameter can be used to assign the values. The time zone of the
given Calendar argument is used as the time zone. Conversely, theget Ti me(...) and get Ti nest anp(. . .)

methods of the ResultSet interface which have a Calendar parameter can be used with a Calendar argument to retrieve
the values.

JDBC 4 and JAVAG6 has an unfortunate limitation and does not include type codes for SQL datetime types that have
a TIME ZONE property. Therefore, for compatibility with database tools that are limited to the JDBC type codes,
HyperSQL reports these types by default as datetime types without TIME ZONE.

Java 8 Extensions

JAVA 8 introduced new type codes for TIMESTAMP WITH TIME ZONE and TIME WITH TIME ZONE.
HSQLDB 2.4.0 and later when compiled with JDK8 supports this in Resul t Set, Pr epar edSt at enent and
Cal | abl eSt at enment .

e Theget bj ect (i nt col umml ndex) method on a column of TIMESTAMP WITH TIME ZONE returns an
java.tinme. O fsetDat eTi ne object.

25

HyperS@L SQL Language

e The get Qbj ect (int col uml ndex) method on a column of TIME WITH TIME ZONE returns an
java.tinme. OfsetTi ne object.

 The get Gbject(int columlndex, Cass type) method on any date, time and timestamp
supports the j ava. ti me package types. Local Dat e, Local Ti ne, Local Dat eTi me, O f set Ti ne and
O f set Dat eTi ne aswell asj ava. sql packagetypes, Dat e, Ti ne and Ti nest anp.

» Theset Ohj ect methods also support Java objects of the types listed above.

e Theget Obj ect andset Obj ect methods with column name parameters behave just like their counterparts with
columnlndexe parameters.

Non-Standard Extensions

HyperSQL version 2.5 supports some extensions to the SQL standard treatment of datetime and interval types. For
example, the Standard expression to add a number of days to a date has an explicit INTERVAL value but HSQLDB
also alows an integer to be used without specifying DAY . Examples of some Standard expressions and their non-
standard alternatives are given below:

-- standard forns
CURRENT_DATE + '2' DAY
SELECT (LOCALTI MESTAMP - ati mest anpcol utm) DAY TO SECOND FROM at abl e

-- non-standard forms
CURRENT_DATE + 2
SELECT LOCALTI MESTAMP - ati mest anpcol utm FROM at abl e

It is recommended to use the SQL Standard syntax asit is more precise and avoids ambiguity.

Interval Types

Interval types are used to represent differences between date time values. The difference between two date time values
can be measured in seconds or in months. For measurements in months, the units YEAR and MONTH are available,
while for measurements in seconds, the units DAY, HOUR, MINUTE, SECOND are available. The units can be used
individually, or as a range. An interval type can specify the precision of the most significant field and the second
fraction digits of the SECOND field (if it has a SECOND field). The default precision is 2, following the Standard.
The default second precision is 0. The default precision istoo small for many applications and should be overridden.

<interval type> ::= INTERVAL <interval qualifier>
<interval qualifier> ::= <start field> TO<end field>| <single datetine field>
<start field> ::= <non-second primary datetinme field> [<left paren> <interval

| eading field precision> <right paren>]

<end field> ::= <non-second prinmary datetinme field> | SECOND [<left paren>
<interval fractional seconds precision> <right paren>]

<single datetine field> ::= <non-second primary datetine field> [<left paren>
<interval leading field precision> <right paren>] | SECOND [<left paren>
<interval leading field precision> [<comm> <interval fractional seconds
precision>] <right paren>]

<primary datetine field> ::= <non-second primary datetine field> | SECOND
<non-second prinary datetinme field> ::= YEAR | MONTH | DAY | HOUR | M NUTE
<interval fractional seconds precision> ::= <unsigned integer>

26

HyperS@L SQL Language

<interval leading field precision> ::= <unsigned integer>

Examples of INTERVAL type definition:

| NTERVAL YEAR TO MONTH
| NTERVAL YEAR(3)

| NTERVAL DAY(4) TO HOUR

| NTERVAL M NUTE(4) TO SECOND(6)
| NTERVAL SECONDY 4, 6)

The word INTERVAL indicates the general type name. The rest of the definition is called an <i nt er val
qual i fi er>. Thisdesignation isimportant, as in most expressions <i nt erval qual i fi er > isused without
theword INTERVAL.

Interval Values

Aninterval value can be negative, positive or zero. An interval type has all the datetime fields in the specified range.
Thesefields are similar to those in the TIMESTAMP type. The differences are as follows:

The first field of an interval value can hold any numeric value up to the specified precision. For example, the hour
fieldin HOUR(2) TO SECOND can hold values above 23 (up to 99). The year and month fields can hold zero (unlike
aTIMESTAMP vaue) and the maximum value of amonth field that is not the most significant field, is 11.

The standard function ABS(<i nt er val val ue expressi on>) canbeusedto convert anegativeinterval value
to a positive one.

Theliteral representation of interval values consists of the type definition, with a string representing the interval value
inserted after the word INTERVAL. Some examples of interval literal below:

I NTERVAL ' 145 23:12:19. 345" DAY(3) TO SECONX 3)

I NTERVAL ' 3503: 12: 19. 345" HOUR TO SECOND(3) /* equal to the first value */

I NTERVAL ' 19. 345" SECOND(4, 3) /* maxi mum nunber of digits for the second value is 4, and each
value is expressed with three fraction digits. */

I NTERVAL ' -23-10" YEAR(2) TO MONTH

Interval values of the types that are based on seconds can be cast into one another. Similarly, those that are based on
months can be cast into one another. It is not possible to cast or convert a value based on seconds to one based on
months, or vice versa.

When a cast is performed to a type with a smaller least-significant field, nothing is lost from the interval value.
Otherwise, the values for the missing least-significant fields are discarded. Examples:

CAST (I NTERVAL ' 145 23:12:19'" DAY TO SECOND AS | NTERVAL DAY TO HOUR) = I NTERVAL ' 145 23' DAY
TO HOUR
CAST(| NTERVAL ' 145 23" DAY TO HOUR AS | NTERVAL DAY TO SECOND) = | NTERVAL ' 145 23:00: 00' DAY TO
SECOND

A numeric value can be cast to an interval type. In this case the numeric value is first converted to a single-field
INTERVAL typewiththe samefield astheleast significant field of thetarget interval type. Thisvalueisthen converted
to the target interval type For example CAST(22 ASINTERVAL YEAR TO MONTH) evauatesto INTERVAL '22'
MONTH and then INTERVAL '1 10' YEAR TO MONTH. Note that SQL Standard only supports caststo single-field
INTERVAL types, while HyperSQL allows casting to multi-field types as well.

An interval value can be cast to a numeric type. In this case the interval value is first converted to a single-field
INTERVAL type with the same field as the least significant filed of the interval value. The value is then converted
to the target type. For example, CAST (INTERVAL '1-11' YEAR TO MONTH AS INT) evaluates to INTERVAL
'23' MONTH, and then 23.

27

HyperS@L SQL Language

Aninterval value can be cast into a character type, which resultsin an INTERVAL literal. A character value can be
cast into an INTERVAL type so long asit isastring with aformat compatible with an INTERVAL literal.

Two interval values can be added or subtracted so long as the types of both are based on the samefield, i.e., both are
based on MONTH or SECOND. The values are both converted to a single-field interval type with same field as the
least-significant field between the two types. After addition or subtraction, the result is converted to an interval type
that contains all the fields of the two original types.

An interval value can be multiplied or divided by a numeric value. Again, the value is converted to a numeric, which
isthen multiplied or divided, before converting back to the original interval type.

Aninterval valueis negated by simply prefixing with the minus sign.

Interval values used in expressions are either typed values, including interval literals, or are interval casts. The
expression; <expr essi on> <interval qualifier>isacastof theresult of the<expr essi on> into the
INTERVAL typespecifiedby the<i nt erval qualifier>. The cast can be forned by addi ng t he
keywords and parent heses as follows: CAST (<expression> AS | NTERVAL <interval
qualifier>).

The exanples below feature different forms of expression that represent an
i nterval value, which is then added to the given date literal.

I NTERVAL ' 1-10" YEAR TO MONTH /* interval literal */
'1-10" YEAR TO MONTH /* the string '1-10" is cast into | NTERVAL YEAR TO

DATE ' 2000- 01- 01"
DATE ' 2000- 01- 01"
MONTH */

DATE ' 2000- 01-01' + 22 MONTH /* the integer 22 is cast into | NTERVAL MONTH, sane val ue as above
*/

DATE ' 2000- 01-01' - 22 DAY /* the integer 22 is cast into | NTERVAL DAY */

DATE ' 2000- 01-01' + COL2 /* the type of COL2 nust be an | NTERVAL type */

DATE ' 2000- 01-01' + COL2 MONTH /* COL2 may be a nunmber, it is cast into a MONTH i nterval */

+ +

Datetime and I nterval Operations

An interval can be added to or subtracted from a datetime value so long as they have some fields in common. For
example, an INTERVAL MONTH cannot be added to aTIME value, whilean INTERVAL HOUR TO SECOND can.
The interval is first converted to a numeric value, then the value is added to, or subtracted from, the corresponding
field of the datetime value.

If the result of addition or subtraction is beyond the permissible range for the field, the field value is normalised and
carried over to the next significant field until all the fields are normalised. For example, adding 20 minutesto TIME
'23:50:10" will result successively in '23:70:10', '24:10:10' and finally TIME '00:10:10'". Subtracting 20 minutes from
theresult is performed asfollows: '00:-10:10', -1:50:10', finally TIME '23:50:10'". Note that if DATE or TIMESTAMP
normalisation resultsin the YEAR field value out of the range (1,10000), then an exception condition is raised.

If an interval value based on MONTH is added to, or subtracted from aDATE or TIMESTAMP value, the result may
have an invalid day (30 or 31) for the given result month. In this case an exception condition is raised.

The result of subtraction of two datetime expressions is an interval value. The two datetime expressions must be of
the same type. The type of the interval value must be specified in the expression, using only the interval field names.
The two datetime expressions are enclosed in parentheses, followed by the <i nt erval qual i fi er> fields. In
the first example below, COL1 and COL 2 are of the same datetime type, and the result is evaluated in INTERVAL
YEAR TO MONTH type.

(COL1 — COL2) YEAR TO MONTH /* the difference between two DATE or two Tl EMSTAMP val ues in years
and nonths */

(CURRENT_DATE — COL3) DAY /* the nunmber of days between the value of COL3 and the current date
*

/

28

HyperS@L SQL Language

(CURRENT_DATE - DATE ' 2000-01-01') YEAR TO MONTH /* the nunber of years and nonths since the
begi nning of this century */

CURRENT_DATE - 2 DAY /* the date of the day before yesterday */

(CURRENT_TI MESTAMP - TI MESTAMP ' 2009- 01- 01 00: 00: 00') DAY(4) TO SECOND(2) /* days to seconds
since the given date */

The individua fields of both datetime and interval values can be extracted using the EXTRACT function. The same
function can also be used to extract the time zone displacement fields of a datetime value.

EXTRACT ({YEAR | MONTH | DAY | HOUR | MNUTE | SECOND | TIMEZONE HOUR |
TI MEZONE_M NUTE | DAY_OF WEEK | VEEK OF_YEAR } FROM{<dateti nme val ue> | <interval
val ue>})

The dichotomy between interval types based on seconds, and those based on months, stems from the fact that the
different calendar months have different numbers of days. For example, the expression, “nine months and nine days
since an event” is not exact when the date of the event is unknown. It can represent a period of around 284 days give
or take one. SQL interval values are independent of any start or end dates or times. However, when they are added to
or subtracted from certain date or timestamp values, the result may be invalid and cause an exception (e.g. adding one
month to January 30 results in February 30, which isinvalid).

JDBC has an unfortunate limitation and does not include type codes for SQL INTERVAL types. Therefore, for
compatibility with database tools that are limited to the JDBC type codes, HyperSQL reports these types by default as
VARCHAR. You can use the URL property hsgl db. transl ate_dti _types=f al se to override the default
behaviour.

Java 8 Extensions

JAVA 8 does not have SQL type codes for INTERVAL types. HSQLDB 2.4.0 and later, when compiled with
JDKS8 or later, supports j ava. ti ne types for INTERVAL typesin Resul t Set, Prepar edSt at enent and
Cal I abl eSt at enment .

e The get Object(int col uml ndex, d ass type) method on an INTERVAL supports
java. tinme. Peri odtypefor YEARand MONTH interval andj ava. ti nme. Dur at i on typefor other interval
types that cover DAY to SECOND.

» Theset Obj ect (i nt col uml ndex) methodacceptsj ava. ti ne. Peri odandj ava. ti ne. Duration
objects for columns of relevant INTERVAL types.

» Theget Obj ect andset Obj ect methodswith column name parameters behavejust like their counterparts with
columnlndexe parameters.

Arrays

Array are a powerful feature of SQL:2016 and can help solve many common problems. Arrays should not be used
as a substitute for tables.

HyperSQL supports arrays of values according to the Standard.

Elements of the array are either NULL, or of the same datatype. It is possible to define arrays of all supported types,
including the types covered in this chapter and user-defined types, except L OB types. An SQL array isonedimensional
and is addressed from position 1. An empty array can also be used, which has no element.

Arrays can be stored in the database, as well as being used as temporary containers of values for simplifying SQL
statements. They facilitate data exchange between the SQL engine and the user's application.

The full range of supported syntax allows array to be created, used in SELECT or other statements, combined with
rows of tables, and used in routine calls.

29

HyperS@L SQL Language

Array Definition

Thetype of atable column, aroutine parameter, avariable, or the return value of afunction can be defined asan array.

<array type> ::= <data type> ARRAY [<left bracket or trigraph> <maxi mum
cardinality> <right bracket or trigraph>]

The word ARRAY is added to any valid type definition except BLOB and CLOB type definitions. If the optional
<maxi mum car di nal i t y>isnot used, the default valueis 1024. The size of the array cannot be extended beyond
maximum cardinality.

In the example below, the table contains a column of integer arrays and a column of varchar arrays. The VARCHAR
array hasan explicit maximum size of 10, which means each array can have between 0 and 10 elements. The INTEGER
array has the default maximum size of 1024. The scores column has adefault clause with an empty array. The default
clause can be defined only as DEFAULT NULL or DEFAULT ARRAY[] and does not alow arrays containing
elements.

CREATE TABLE t (id INT PRI MARY KEY, scores |NT ARRAY DEFAULT ARRAY[], nanes VARCHAR(20)
ARRAY[10])

An array can be constructed from value expressions or a query expression.

<array value constructor by enuneration> ::= ARRAY <left bracket or trigraph>
<array elenment |ist> <right bracket or trigraph>

<array el ement list>::= <value expression>[{ <comma> <val ue expression>}...]

<array value constructor by query> ::= ARRAY <left paren> <query expression>
[<order by clause>] <right paren>

In the examples below, arrays are constructed from values, column references or variables, function calls, or query
expressions.

ARRAY [1, 2, 3]

ARRAY ['HOT', 'COLD]

ARRAY [varl, var2, CURRENT_DATE]

ARRAY (SELECT | ast name FROM nanest abl e ORDER BY i d)

Inserting and updating atablewithan ARRAY column can use array constructors, not only for updated column values,
but also in equality search conditions:

INSERT INTO t VALUES 10, ARRAY[1, 2,3], ARRAY['HOT', 'COLD]
UPDATE t SET nanes = ARRAY['LARGE', 'SMALL'] WHERE id = 12
UPDATE t SET nanes = ARRAY['LARGE', 'SMALL'] WHERE id < 12 AND scores = ARRAY[3, 4]

When using a PreparedStatement with an ARRAY parameter, an object of the type java.sql.Array must be used to set
the parameter. The or g. hsql db. j dbc. JDBCAr r ayBasi ¢ class can be used for constructing a java.sgl.Array
object in the user's application. Code fragment below:

String sql = "UPDATE t SET nanes = ? WHERE id = ?";
Pr epar edSt at enent ps = connecti on. pr epar eSt at enent (sql)
Obj ect[] data = new Object[]{"one", "two"};

/1 default types defined in org. hsql db.types. Type can be used

org. hsqgl db. types. Type type = org. hsqgl db. t ypes. Type. SQL_VARCHAR DEFAULT;
JDBCArrayBasi c array = new JDBCArrayBasi c(data, type);

ps.setArray(1, array);

ps.setlnt(2, 1000);

ps. execut eUpdat e() ;

30

HyperS@L SQL Language

Trigraph

A trigraph is a substitute for <left bracket> and <right bracket>.
<l eft bracket trigraph> ::= 2?(

<right bracket trigraph> ::= ??)

The example below shows the use of trigraphs instead of brackets.

INSERT INTO t VALUES 10, ARRAY??(1,2,3??), ARRAY['HOT', 'COLD]
UPDATE t SET nanes = ARRAY ??(' LARGE', 'SMALL'??) WHERE id = 12
UPDATE t SET nanes = ARRAY['LARGE', 'SMALL'] WHERE id < 12 AND scores = ARRAY[3, 4]

Array Reference

The most common operations on an array are element reference and assignment, which are used when reading or
writing an element of the array. Unlike Java and many other languages, arrays are extended if an element is assigned
to an index beyond the current length. This can result in gaps containing NULL elements. Array length cannot exceed
the maximum cardinality.

Elements of al arrays, including those that are the result of function calls or other operations can be referenced for
reading.

<array elenment reference> ::= <array val ue expressi on> <l eft bracket> <nuneric
val ue expression> <right bracket>

Elements of arrays that are table columns or routine variables can be referenced for writing. Thisis donein a SET
statement, either inside an UPDATE statement, or as a separate statement in the case of routine variables, OUT and
INOUT parameters.

<target array element specification> ::= <target array reference> <l eft bracket
or trigraph> <sinple value specification> <right bracket or trigraph>

<target array reference> ::= <SQ@ paraneter reference> | <columm reference>

Note that only simple values or variables are alowed for the array index when an assignment is performed. The
examples below demonstrate how elements of the array are referenced in SELECT and UPDATE statements.

SELECT scores[ranki ng], nanes[ranking] FROMt JON t1 on (t.id = t1.tid)
UPDATE t SET scores[2] = 123, nanes[2] = 'Reds' WHERE id = 10

Array Operations
Several SQL operations and functions can be used with arrays.
CONCATENATION

Array concatenation is performed similar to string concatenation. All elements of the array on the right are appended
to the array on left.

<array concatenation> ::= <array value expression 1> <concatenation operator>
<array val ue expression 2>

<concatenation operator> ::= ||

FUNCTIONS

31

HyperS@L SQL Language

Functions listed below operate on arrays. Details are described in the Built In Functions chapter.

ARRAY_AGG is an aggregate function and produces an array containing values from different rows of a SELECT
statement. Details are described in the Data Access and Change chapter.

SEQUENCE _ARRAY creates an array with sequential elements.
CARDI NALI TY <l eft paren> <array val ue expression> <right paren>
MAX_CARDI NALI TY <l eft paren> <array val ue expressi on> <right paren>

Array cardinality and max cardinality are functions that return an integer. CARDINALITY returns the e ement count,
while MAX_CARDINALITY returns the maximum declared cardinality of an array.

PCSI TI ON_ARRAY <| ef t paren> <val ue expressi on> | N <array val ue expressi on> [FROV
<nuneric val ue expression>] <right paren>

The POSITION_ARRAY function returns the position of the first match for the <value expression> from the start or
from the given start position when <numeric value expression> is used.

TRIM ARRAY <left paren> <array value expression> <conmme> <nuneric value
expressi on> <ri ght paren>

The TRIM_ARRAY function returns a copy of an array with the specified number of elements removed from the end
of thearray. The<array val ue expressi on> can beany expression that evaluatesto an array.

SORT_ARRAY <l eft paren> <array value expression> [{ ASC | DESC }] [NULLS
{ FIRST | LAST }] <right paren>

The SORT_ARRAY function returns a sorted copy of an array. NULL elements appear at the beginning of the new
array. You can change the sort direction or the position of NULL elements with the option keywords.

CAST

An array can be cast into an array of a different type. Each element of the array is cast into the element type of the
target array type. For example:

SELECT CAST(scores[ranking] AS VARCHAR(6) ARRAY), nanes[ranking] FROMt JONt1l on (t.id =
tl.tid)

UNNEST
Arrays can be converted into table references with the UNNEST keyword.
UNNEST(<array val ue expression>) [WTH ORDI NALI TY]

The<array val ue expressi on> can be any expression that evaluates to an array. A table is returned that
contains one column when WITH ORDINALITY is not used, or two columns when WITH ORDINALITY is used.
The first column contains the elements of the array (including all the nulls). When the table has two columns, the
second column contains the ordinal position of the element in the array. When UNNEST is used in the FROM clause
of aquery, it impliesthe LATERAL keyword, which meansthe array that is converted to table can belong to any table
that precedes the UNNEST in the FROM clause. Thisis explained in the Data Access and Change chapter.

INLINE CONSTRUCTOR

Array constructors can be used in SELECT and other statements. For example, an array constructor with a subquery
can return the values from several rows as one array.

32

HyperS@L SQL Language

The example below showsan ARRAY constructor with a correlated subquery to return the list of order valuesfor each
customer. The CUSTOMER table that is included for testsin the DatabaseM anager GUI app is the source of the data.

SELECT FI RSTNAME, LASTNAME, ARRAY(SELECT | NVO CE. TOTAL FROM | N\VO CE WHERE CUSTOMVERI D =
CUSTOMER. | D) AS ORDERS FROM CUSTOMER

FI RSTNAME LASTNAME ORDERS

Laura St eel ARRAY[2700. 90, 4235. 70]

Rober t Ki ng ARRAY[4761. 60]

Rober t Somrer ARRAY[]

M chael Smith ARRAY[3420. 30]
COMPARISON

Arrays can be compared for equality, but they cannot be compared for ordering alist of values or for range comparison.
Array expressionsarethereforenot allowedinan ORDERBY clause, or in acomparison expression suchasGREATER
THAN. It is possible to define a UNIQUE constraint on a column of ARRAY type. Two arrays are equal if they have
the same length and the values at each index position are either equal or both NULL.

USER DEFINED FUNCTIONS and PROCEDURES

Array parameters, variables and return values can be specified in user defined functions and procedures, including
aggregate functions. An aggregate function can return an array that contains al the scalar values that have been
aggregated. These capabilities allow awider range of applications to be covered by user defined functions and easier
data exchange between the engine and the user's application.

Indexes and Query Speed

HyperSQL supports PRIMARY KEY, UNIQUE and FOREIGN KEY constraints, which can span multiple columns.

Theengine createsindexesinternally to support PRIMARY KEY, UNIQUE and FOREIGN KEY constraints: aunique
index is created for each PRIMARY KEY or UNIQUE constraint; an ordinary index is created for each FOREIGN
KEY constraint.

HyperSQL alows defining indexes on single or multiple columns. You should not create duplicate user-defined
indexes on the same column sets covered by constraints. This would result in unnecessary memory and speed
overheads. See the discussion in the Deployment Guide chapter for more information.

Indexes are crucial for adequate query speed. When range or equality conditionsareused e.g. SELECT ... WHERE
acol > 10 AND bcol = 0, anindex should exist on one of the columns that has a condition. In this example,
thebcol columnisthe best candidate. HyperSQL aways uses the best condition and index. If there are two indexes,
one on acol, and another on bcol, it will choose the index on bcol.

Queries always return results whether indexes exist or not, but they return much faster when an index exists. As a
rule of thumb, HSQL DB is capable of internal processing of queries at around 1000,000 rows per second. Any query
that runsinto several secondsis clearly accessing many thousands of rows. The query should be checked and indexes
should be added to the relevant columns of the tablesif necessary. The EXPLAI N PLAN FOR <quer y> statement
can be used to see which indexes are used to process the query.

When executing aDELETE or UPDATE statement, the engine needs to find the rows that are to be del eted or updated.
If there is an index on one of the columns in the WHERE clause, it is often possible to start directly from the first
candidate row. Otherwise all the rows of the table have to be examined.

Indexes are even more important in joins between multipletables. SELECT ... FROMt1 JONt2 ONt1l.cl
= t2.c2 isperformed by taking rows of t1 one by one and finding a matching row in t2. If there is no index on
t2.c2 then for each row of t1, all the rows of t2 must be checked. Whereas with an index, a matching row can be found

33

HyperS@L SQL Language

in a fraction of the time. If the query also has a conditionontl, eg.,, SELECT ... FROMt1l JON t2 ON
tl.cl = t2.¢c2 WHERE t1.c3 = 4 then anindex on t1.c3 would eliminate the need for checking all the
rows of t1 one by one, and will reduce query time to less than a millisecond per returned row. So if t1 and t2 each
contain 10,000 rows, the query without indexes involves checking 100,000,000 row combinations. With an index on
t2.c2, thisis reduced to 10,000 row checks and index lookups. With the additional index on t2.c2, only about 4 rows
are checked to get the first result row.

Note that in HSQLDB an index on multiple columns can be used internally as a non-unique index on the first column
in the list. For example: CONSTRAI NT nanel UNIQUE (cl, c2, c3); meansthereisthe equivalent of
CREATE | NDEX nane2 ON atabl e(cl); . Soyoudo not need to specify an extraindex if you require one
on the first column of thelist.

In HyperSQL, a multi-column index will speed up queries that contain joins or values on the first n columns of the
index. Y ou need NOT declare additional individual indexes on those columns unless you use queries that search only
on a subset of the columns. For example, rows of atable that hasa PRIMARY KEY or UNIQUE constraint on three
columns or simply an ordinary index on those columns can be found efficiently when values for all three columns, or
the first two columns, or the first column, are specified in the WHERE clause. For example, SELECT ... FROM
tl WHERE t1.c1 =4 ANDt1.c2 =6 ANDt1.c3 = 8 willuseanindexont 1(c1, c2, c3) ifitexists.

A multi-column index will not speed up queries on the second or third column only. The first column must be specified
inthe JOIN .. ON or WHERE conditions.

Sometimes query speed depends on the order of the tables in the JOIN .. ON or FROM clauses. For example, the
second query below should be faster with large tables (provided there is an index on TB. COL3). The reason is that
TB. COL3 can be evaluated very quickly if it appliesto the first table (and there is an index on TB. COL3):

-- TBis a very large table with only a few rows where TB.COL3 = 4

SELECT * FROM TA JO N TB ON TA COL1
SELECT * FROM TB JO N TA ON TA COL1

TB. COL2 AND TB. COL
TB. COL2 AND TB. COL

3
3

4;
4;

Thegeneral ruleisto put first thetabl e that has anarrowing condition on one of its columns. In certain cases, HyperSQL
reorders the joined tablesiif it is obvious that this will introduce a narrowing condition.

HyperSQL features automatic, on-the-fly indexes for views and subselects that are used in a query.
Indexes are used when a LIKE condition searches from the start of the string.

Indexes are used for ORDER BY clauses if the same index is used for selection and ordering of rows. It is possible
to force the use of index for ORDER BY..

Query Processing and Optimisation

HyperSQL performs " cost-base optimisation” to changesthe order of tablesin aquery in order to optimise processing.
It computes and compares the approximate time (cost) it takes to execute the query with different table orders and
choosesthe onewith theleast costs. Thishappens only when one of the tables has anarrowing condition and reordering
does not change the result of the query.

Indexes and Conditions

HyperSQL optimises queries to use indexes, for all types of range and equality conditions, including IS NULL and
NOT NULL conditions. Conditions can bein join or WHERE clauses, including all types of joins.

In addition, HyperSQL will use an index (if one exists) for IN conditions, whether constants, variable, or subqueries
are used on the right-hand side of the IN predicate. Multicolumn IN conditions can also use an index.

34

HyperS@L SQL Language

HyperSQL can always useindexeswhen several conditions are combined with the AND operator, choosing acondition
which can use an index. This now extended to all equality conditions on multiple columns that are part of an index.

HyperSQL will also use indexes when several conditions are combined with the OR operator and each condition can
use an index (each condition may use a different index). For example, if a huge table has two separate columns for
first name and last name, and both columns are indexed, a query such as the following example will use the indexes
and complete in ashort time:

-- TCis a very large table

SELECT * FROM TC WHERE TC. FI RSTNAME = ' John' OR TC. LASTNAME = 'Smith' OR TC. LASTNAME =
"WIllians'

Each subquery is considered a separate SELECT statement and uses indexes when they are available.

In each SELECT statement, at least one index per table can be used if there is a query conditions that can use the
index. When conditions on a table are combined with the OR operator, and each condition can use an index, multiple
indexes per table are used.

Indexes and Operations

HyperSQL optimises simple row count queriesin the form of SELECT COUNT(*) FROM <t abl e> and returns
the result immediately (this optimisation does not take placein MV CC mode).

HyperSQL can use an index on a column for SELECT MAX(<colum>) FROM <tabl e> and SELECT
M N(<col utm>) FROM <t abl e> queries. There should be an index on the <column> and the query can have a
WHERE condition on the same column. In the example below the maximum value for the TB.COL 3 below 1000000
isreturned.

| SELECT MAX(TB.COL3) FROM TB WHERE TB. COL < 1000000 |

HyperSQL can use an index for simple queries containing DISTINCT or GROUP BY to avoid checking all the rows
of the table. Note that indexes are always used if the query has a condition, regardless of the use of DISTINCT or
GROUP BY. This particular optimisation applies to cases in which all the columns in the SELECT list are from the
same table and are covered by asingle index, and any join or query condition uses thisindex.

For example, with the large table below, aDISTINCT or GROUP BY query to return all thelast names, can use an the
index on the TC.LASTNAME column. Similarly, a GROUP BY query on two columns can use an index that covers
the two columns.

-- TCis a very large table

SELECT DI STI NCT LASTNAME FROM TC WHERE TC. LASTNAME > ' F
SELECT STATE, LASTNAME FROM TC GROUP BY STATE, LASTNAME

Indexes and ORDER BY, OFFSET and LIMIT

HyperSQL can use an index on an ORDER BY clause if all the columns in ORDER BY are in a single-column or
multi-column index (in the exact order). Thisisimportant if thereisaLIMIT n (or FETCH n ROWS ONLY) clause.
In this situation, the use of index allows the query processor to access only the number of rows specified inthe LIMIT
clause, instead of building the whole result set, which can be huge. This also works for joined tableswhen the ORDER
BY clauseison the columns of the first tablein ajoin. Indexes are used in the same way when ORDER BY ... DESC
is specified in the query. Note that unlike some other RDBMS, HyperSQL does not need or create DESC indexes. It
can use any ordinary, ascending index for ORDER BY ... DESC.

If there is an equality or range condition (e.g. EQUALS, GREATER THAN) condition on the columns specified in
the ORDER BY clause, the index is till used.

35

HyperS@L SQL Language

In the two examples below, the index on TA.COL 3 is used and only up to 1000 rows are processed and returned.

-- TAis a very large table with an i ndex on TA COL3

SELECT * FROM TA JO N TB ON TA COL2
SELECT * FROM TA JO N TB ON TA COL2
BY TA. COL3 DESC LIM T 1000;

TB. COL1 WHERE TA. COL3 > 40000 ORDER BY TA. COL3 LIM T 1000;
TB. COL1 WHERE TA. COL3 > 40000 AND TA. COL3 < 100000 ORDER

But if the query contains an equality condition on another indexed column in the table, this may take precedence and
no index may be used for ORDER BY. In this case USING INDEX can be added to the end of the query to force the
use of theindex for the LIMIT operation. In the example below thereisan index on TA.COL 1 aswell asthe index on
TA.COL3. Normally the index on TA.COL1 is used, but the USING INDEX hint results in the index on TB.COL3
to be used for selecting the first 1000 rows.

-- TAis a very large table with an index on TA. COL3 and a separate index on TA COL1

SELECT * FROM TA JON TB ON TA. COL2 = TB. COL1 WHERE TA. COL1 = ' SENT" AND TB. COL3 > 40000 ORDER
BY TB. COL3 LIM T 1000 USI NG | NDEX;

36

HyperS@L

Chapter 3. Sessions and Transactions

Fred Toussi, The HSQL Development Group
$Revision: 6098 $

Copyright 2010-2020 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.

2020-06-29

Overview

All SQL statements are executed in sessions. When a connection is established to the database, a session is started.
The authorization of the session isthe name of the user that started the session. A session has several properties. These
properties are set by default at the start according to database settings.

SQL Statements are generaly transactional statements. When a transactional statement is executed, it starts a
transaction if no transaction is in progress. If SQL Data (data stored in tables) is modified during a transaction, the
change can be undone with a ROLLBACK statement. When a COMMIT or ROLLBACK statement is executed, the
transaction is ended. Each SQL statement works atomically: it either succeeds or fails without changing any data. If
asingle statement fails, an error is raised but the transaction is not normally terminated. However, some failures are
caused by execution of statements that are in conflict with statements executed in other concurrent sessions. Such
failures result in an implicit ROLLBACK, in addition to the exception that is raised.

Schema definition and manipulation statements are also transactional according to the SQL Standard. HyperSQL
performs automatic commits before and after the execution of such transactions. Therefore, schema-related statements
cannot berolled back. Thisislikely to changein future versions.

Some statements are not transactional. Most of these statements are used to change the properties of the session. These
statements begin with the SET keyword.

If the AUTOCOMMIT property of a session is TRUE, then each transactional statement is followed by an implicit
COMMIT.

The default isolation level for a session is READ COMMITTED. This can be changed using the JDBC
j ava. sgl . Connecti on object and its set Tr ansact i onl sol ati on(int | evel) method. The session
can be put in read-only mode using the set ReadOnl y(bool ean readOnl y) method. Both methods can be
invoked only after acommit or arollback, but not during a transaction.

Theisolation level and / or the readonly mode of atransaction can also be modified using an SQL statement. Y ou can
use the statement to change only the isolation mode, only the read-only mode, or both at the sametime. This statement
can be issued only before atransaction starts or after a commit or rollback.

SET TRANSACTION <transaction characteristic> | <coma> <transaction
characteristic>]

This statement is described in detail later in this chapter.

Session Attributes and Variables

Each session has several system attributes. A session can also have user-defined session variables.

37

HyperS@L Sessions and Transactions

Session Attributes

The system attributes reflect the current mode of operation for the session. These attributes can be accessed with
function calls and can be referenced in queries. For example, they can be returned using the VALUES <attri bute
function>, ... statement.

The named attributes such as CURRENT_USER, CURRENT_SCHEMA, etc. are SQL Standard functions. Other
attributes of the session, such as auto-commit or read-only modes can be read using other built-in functions. All these
functions are listed in the Built In Functions chapter.

Session Variables

Session variables are user-defined variables created the same way asthe variablesfor stored procedures and functions.
Currently, these variables cannot be used in general SQL statements. They can be assigned to IN, INOUT and OUT
parameters of stored procedures. This allows calling stored procedures which have INOUT or OUT arguments and
is useful for development and debugging. See the example in the SQL-Invoked Routines chapter, under Formal
Parameters.

Example 3.1. User-defined Session Variables

DECLARE counter | NTEGER DEFAULT 3;
DECLARE result VARCHAR(20) DEFAULT NULL;
SET count er =15;

CALL nyroutine(counter, result)

Session Tables

With necessary access privileges, sessions can access al table, including GLOBAL TEMPORARY tables, that are
defined in schemas. Although GLOBAL TEMPORARY tables have a single name and definition which appliesto all
sessions that use them, the contents of the tables are different for each session. The contents are cleared either at the
end of each transaction or when the session is closed.

Session tables are different because their definition isvisible only within the session that definesatable. The definition
is dropped when the onisclosed. Session tables do not belong to schemas.

<tenporary table declaration> ::= DECLARE LOCAL TEMPORARY TABLE <table nane>
<table element list>] ON COWM T { PRESERVE | DELETE } RO\S]

The syntax for declaration is based on the SQL Standard. A session table cannot have FOREIGN KEY constraints,
but it can have PRIMARY KEY, UNIQUE or CHECK constraints. A session table definition cannot be modified by
adding or removing columns, indexes, etc.

Itis possibleto refer to a session table using its name, which takes precedence over a schematable of the same name.
To distinguish a session table from schema tables, the pseudo schema names, MODULE or SESSION can be used.
An example is given below:

Example 3.2. User-defined Temporary Session Tables

DECLARE LOCAL TEMPORARY TABLE buffer (id |INTEGER PRI MARY KEY, textdata VARCHAR(100)) ON COW T
PRESERVE ROWNS

I NSERT | NTO nodul e. buf fer SELECT id, firstnane || ' ' || |astnane FROM custoners

-- do sone nore work

DROP TABLE nodul e. buf fer

-- or use alternative pseudo schema nane

DROP TABLE sessi on. buf fer

38

HyperS@L Sessions and Transactions

Session tables can be created inside a transaction. Automatic indexes are created and used on session tables when
necessary for a query or other statement. By default, session table data is held in memory. This can be changed with
the SET SESSI ON RESULT MEMORY ROWS statement.

Transactions and Concurrency Control

HyperSQL 2 has been fully redesigned to support different transaction isolation models. It no longer supports the old
1.8.x model with "dirty read". Although it is perfectly possible to add an implementation of the transaction manager
that supports the legacy model, we thought this is no longer necessary. The new system allows you to select the
transaction isolation model while the engine is running. It also alows you to choose different isolation levels for
different simultaneous sessions.

HyperSQL 2 supports three concurrency control models: two-phase-locking (2PL), which is the default, multiversion
concurrency control (MVCC) and a hybrid model, which is 2PL plus multiversion rows (MVLOCKS). Within
each model, it supports some of the 4 standard levels of transaction isolation. READ UNCOMMITTED, READ
COMMITTED, REPEATABLE READ and SERIALIZABLE. The concurrency control model is a strategy that
governsall the sessionsand is set for the database, as opposed for individual sessions. Theisolation level isaproperty
of each SQL session, so different sessions can have different isolation levels. In the new implementation, all isolation
levels avoid the "dirty read" phenomenon and do not read uncommitted changes made to rows by other transactions.

HyperSQL is fully multi-threaded in all transaction models. Sessions continue to work simultaneously and can fully
utilise multi-core processors.

Each active session has a separate thread. When the database is run as a server, HyperSQL allocates and manages
the threads. In in-process databases, sessions are accessed indirectly via JDBC connections. Each connection must be
accessed via the same thread in the user application for the duration of atransaction. In in-process databases, if the
user application interrupts the thread that is executing SQL statements, the interrupt is cleared by HyperSQL if it is
caught. Y ou can changethiswith SET DATABASE TRANSACTION ROLLBACK ON INTERRUPT TRUE toforce
the transaction to roll back on interrupt and keep the interrupted state of the thread.

The concurrency control model of alive database can be changed. The SET DATABASE TRANSACTI ON CONTRCL
{ LOCKS | MVLOCKS | MVCC } canbe used by auser with the DBA role.

Two Phase Locking

The two-phase locking model is the default mode. It is referred to by the keyword, LOCKS. In the 2PL model, each
table that isread by atransaction islocked with ashared lock (read lock), and each table that iswritten to islocked with
an exclusive lock (write lock). If two sessions read and modify different tables then both go through simultaneoudly.
If one session triesto lock atable that has been locked by the other, if both locks are shared locks, it will go ahead. If
either of the locksis an exclusive lock, the engine will put the session in wait until the other session commits or rolls
back its transaction. The engine will throw an error if the action would result in deadlock.

HyperSQL also supports explicit locking of a group of tables for the duration of the current transaction. Use of this
command blocks accessto thelocked tablesby other onsand ensuresthe current session can complete theintended
reads and writes on the locked tables.

If atableisread-only, it will not be locked by any transaction.

The READ UNCOMMITTED isolation level can be used in 2PL modes for read-only operations. It is the same as
READ COMMITTED plusread only.

The READ COMMITTED isolation level isthe default. It keeps write locks on tables until commit, but releases the
read locks after each operation.

The REPEATABLE READ leve is upgraded to SERIALIZABLE. These levels keep both read and write locks on
tables until commit.

39

HyperS@L Sessions and Transactions

It is possible to perform some critical operations at the SERIALIZABLE level, while the rest of the operations are
performed at the READ COMMITTED level.

Note: two phase locking refers to two periods in the life of atransaction. In the first period, locks are acquired, in the
second period locks are released. No new lock is acquired after releasing alock.

Two Phase Locking with Snapshot Isolation

Thismodel isreferred to as MVLOCKS. It works the same way as normal 2PL as far as updates are concerned.

SNAPSHOT ISOLATION isamultiversion concurrency strategy which uses the snapshot of the whole database at the
time of the start of the transaction. In this model, read-only transactions use SNAPSHOT ISOLATION. While other
sessions are busy changing the database, the read-only session sees a consistent view of the database and can access
all the tables even when they are locked by other sessions for updates.

There are many applications for this mode of operation. In heavily updated data sets, this mode allows uninterrupted
read access to the data.

Lock Contention in 2PL

When multiple connections are used to access the database, the transaction manager controls their activities. When
each transaction performs only reads or writes on asingle table, there is no contention. Each transaction waits until it
can obtain alock then performs the operation and commits. Contentions occur when transactions perform reads and
writes on more than one table, or perform aread, followed by awrite, on the same table.

For example, when sessions are working at the SERIALIZABLE level, when multiple sessionsfirst read from atable
in order to check if arow exists, then insert a row into the same table when it doesn't exist, there will be regular
contention. Transaction A reads from the table, then does Transaction B. Now if either Transaction A or B attempts
to insert a row, it will have to be terminated as the other transaction holds a shared lock on the table. If instead of
two operations, a single MERGE statement is used to perform the read and write, no contention occurs because both
locks are obtained at the sametime.

Alternatively, there is the option of obtaining the necessary locks with an explicit LOCK TABLE statement. This
statement should be executed before other statements and should include the names of al the tables and the locks
needed. After this statement, all the other statements in the transaction can be executed and the transaction committed.
The commit will remove all the locks.

HyperSQL detects deadlocks before attempting to execute a statement. When alock is released after the completion
of the statement, the first transaction that is waiting for the lock is allowed to continue.

HyperSQL is fully multi threaded. It therefore allows different transactions to execute concurrently so long as they
are not waiting to lock the same table for write.

Locks in SQL Routines and Triggers

In both LOCKS and MVLOCKS models, SQL routines (functions and procedures) and triggers obtain al the read
and write locks at the beginning of the routine execution. SQL statements contained in the routine or trigger are all
executed without deadlock as all thelocks have already been obtained. At the end of execution of the routine or trigger,
read locks are released if the session isolation level is READ COMMITTED.

MVCC

In the MV CC model, there are no shared, read locks. Exclusive locks are used on individual rows, but their use
is different. Transactions can read and modify the same table simultaneously, generally without waiting for other
transactions. The SQL Standard isolation levels are used by the user's application, but these isolation levels are
translated to the MV CC isolation levels READ CONSISTENCY or SNAPSHOT ISOLATION.

40

HyperS@L Sessions and Transactions

When transactions are running at READ COMMITTED level, no conflict will normally occur. If a transaction that
runs at this level wants to modify arow that has been modified by another uncommitted transaction, then the engine
puts the transaction in wait, until the other transaction has committed. The transaction then continues automatically.
Thisisolation level is called READ CONSISTENCY.

Deadlock is completely avoided by the engine. The database setting, SET DATABASE TRANSACTION
ROLLBACK ON CONFLICT, determines what happensin case of deadlock. In theory, conflict (deadlock) ispossible
if each transaction iswaiting for adifferent row modified by the other transaction. In this case, one of the transactions
is immediately terminated by rolling back all the previous statements in the transaction in order to alow the other
transaction to continue. If the setting has been changed to FALSE with the <set dat abase transaction
rol Il back on conflict statenent>, the session that avoided executing the deadlock-causing statement
returnsan error, but without rolling back the previous statementsin the current transaction. This session should perform
an alternative statement to continue and commit or roll back the transaction. Once the session has committed or rolled
back, the other session can continue. This alows maximum flexibility and compatibility with other database engines
which do not roll back the transaction upon deadlock.

When transactions are running in REPEATABLE READ or SERIALIZABLE isolation levels, conflict ismore likely
to happen. There is no difference in operation between these two isolation levels. This isolation level is called
SNAPSHOT ISOLATION.

In this mode, when the duration of two transactions overlaps, if one of the transactions has modified a row and the
second transaction wants to modify the same row, the action of the second transaction will fail. This happens even
if the first transaction has already committed. The engine will invalidate the second transaction and roll back all its
changes. If the setting ischanged to falsewiththe<set dat abase transacti on rol | back on confli ct
st at enent >, then the second transaction will just return an error without rolling back. The application must perform
an dternative statement to continue or roll back the transaction.

Inthe MV CC model, READ UNCOMMITTED ispromoted to READ COMMITTED, asthe new architectureisbased
on multi-version rows for uncommitted data and more than one version may exist for some rows.

With MVCC, when a transaction only reads data, then it will go ahead and complete regardliess of what other
transactions may do. This does not depend on the transaction being read-only or the isolation modes.

Choosing the Transaction Model

The SQL Standard defines theisolation levels as modes of operation that avoid the three unwanted phenomena, "dirty
read", "fuzzy read" and "phantom row" during atransaction. The "dirty read" phenomenon occurs when a session can
read changes to a row made by another uncommitted session. The "fuzzy read" phenomenon occurs when a session
reads a row and the row is modified by another session which commits, then the first session reads the row again.
The "phantom row" phenomenon occurs when a session performs an operation that affects several rows, for example,
counts the rows or modifies them using a search condition, then another session adds one or more rows that fulfil
the same search condition and commits, then the first session performs an operation that relies on the results of its
last operation. According to the Standard, the SERIALIZABLE isolation level avoids al three phenomena and also
ensures that all the changes performed during a transaction can be considered as a series of uninterrupted changes to
the database without any other transaction changing the database at all for the duration of these actions. The changes
made by other transactions are considered to occur before the SERIALIZABLE transaction starts, or after it ends. The
READ COMMITTED level avoids "dirty read" only, while the REPEATABLE READ leve avoids "dirty read" and
"fuzzy read", but not "phantom row".

The Standard allowsthe engineto return ahigher isol ation level than requested by the application. HyperSQL promotes
a READ UNCOMMITTED request to READ COMMITTED and promotes a REPEATABLE READ reguest to
SERIALIZABLE.

The MV CC modd is not covered directly by the Standard. Research has established that the READ CONSISTENCY
level fulfilsthe requirements of (and is stronger than) the READ COMMITTED level. The SNAPSHOT ISOLATION
level is stronger than the READ CONSISTENCY level. It avoids the three anomalies defined by the Standard, and

41

HyperS@L Sessions and Transactions

is therefore stronger than the REPEATABLE READ level as defined by the Standard. When operating with the
MV CC model, HyperSQL treatsaREPEATABLE READ or SERIALIZABLE setting for atransaction asSNAPSHOT
ISOLATION.

All modes can be used with as many simultaneous connections as required. The default 2PL model is fine for
applications with a single connection, or applications that do not access the same tables heavily for writes. With
multiple simultaneous connections, MV CC can be used for most applications. Both READ CONSISTENCY and
SNAPSHOT ISOLATION levels are stronger than the corresponding READ COMMITTED level in the 2PL mode.
Some applications require SERIALIZABLE transactions for at least some of their operations. For these applications,
one of the 2PL modes can be used. It is possible to switch the concurrency model while the database is operational.
Therefore, the model can be changed for the duration of some special operations, such as synchronization with another
data source or performing bulk changes to table contents.

All concurrency models are very fast in operation. When data change operations are mainly on the same tables, the
MV CC model may be faster, especially with multi-core processors.

Schema and Database Change

There are a few SQL statements that must access a consistent state of the database during their executions. These
statements, which include CHECKPOINT and BACKUP, put an exclusive lock on all the tables of the database when
they start.

Some schema mani pul ati on statements put an exclusive lock on one or moretables. For exampl e, changing the columns
of atablelocks the table exclusively.

In the MVCC model, all statements that need an exclusive lock on one or more tables, put an exclusive lock on the
database catal og until they complete.

The effect of these exclusive locks is similar to the execution of data manipulation statements with write locks. The
session that is about to execute the schema change statement waits until no other session is holding alock on any of
the objects. At this point it starts its operation and locks the objects to prevents any other session from accessing the
locked aobjects. As soon as the operation is complete, the locks are all removed.

Simultaneous Access to Tables

It was mentioned that there is no limit on the number of sessions that can access the tables and all sessions work
simultaneously in multi-threaded execution. However, there areinternal resourcesthat are shared. Simultaneous access
to these resources can reduce the overall efficiency of the system. MEMORY and TEXT tables do not share resources
and do not block multi-threaded access. With CACHED tables, each row change operation blocks the file and its
cache momentarily until the operation isfinished. Thisisdone separately for each row, therefore amulti-row INSERT,
UPDATE, or DELETE statement will allow other sessions to access the file during its execution. With CACHED
tables, SELECT operations do not block each other, but selecting from different tables and different parts of alarge
table causes the row cache to be updated frequently and will reduce overall performance.

The new access pattern is the opposite of the access pattern of version 1.8.x. In the old version, even when 20 sessions
are actively reading and writing, only asingle session at atime performs an SQL statement compl etely, before the next
session is allowed access. In the new version, while a session is performing a SELECT statement and reading rows
of a CACHED table to build a result set, another session may perform an UPDATE statement that reads and writes
rows of the same table. The two operations are performed without any conflict, but the row cache is updated more
frequently than when one operation is performed after the other operation has finished.

Viewing Sessions

As HyperSQL is multithreaded, you can view the current sessions and their state from any admin session. The
| NFORVATI ON_SCHEMA. SYSTEM SESSI ONS table contains the list of open sessions, their unique ids and the

42

HyperS@L Sessions and Transactions

statement currently executed or waiting to be executed by each session. For each session, it displaysthelist of sessions
that are waiting for it to commit, or the session that this session iswaiting for.

Session and Transaction Control Statements

ALTER SESSION
alter session statement

<alter session statement> ::= ALTER SESSI ON <nuneric literal> { CLOSE | RELEASE
| END STATEMENT}

The<alter session statenent> isused by an administrator to close another session or to rollback the
transaction in another session. This statement is different from the other statements discussed in this chapter asit is
not used for changing the settings of the current session. When END STATEMENT is used, the current statement that
iswaiting to run or is being executed is aborted. When RELEASE is used, the current transaction is terminated with
arollback. The session remains open. CLOSE may be used after REL EASE has completed.

The session ID is used as a <nuneric |literal > in this statement. The administrator can use the
| NFORVATI ON_SCHEMA. SYSTEM SESSI ONS table to find the session IDs of other sessions.

<alter current session statenent> ::= ALTER SESSI ON RESET { ALL | RESULT SETS
| TABLE DATA }

The<al ter current session statement>isusedto clear and reset different states of the current session.
When ALL is specified, the current transaction is rolled back, the session settings such as time zone, current schema
etc. are restored to their origina state at the time the session was opened and all open result sets are closed and
temporary tables cleared. When RESULT SETSis specified, al currently open result sets are closed and the resources
arereleased. When TABLE DATA is specified, the datain all temporary tablesis cleared.

SET AUTOCOMMIT
set autocommit command
<set autoconmt statement> ::= SET AUTOCCOWM T { TRUE | FALSE }

When an SQL sessionisstarted by creating aJDBC connection, itisin AUTOCOMMIT mode. Inthismode, after each
SQL statement aCOMMIT is performed automatically. This statement changes the mode. It is equivalent to using the
set Aut oConmi t (bool ean aut oComi t) method of the JDBC Connect i on object.

START TRANSACTION
start transaction statement

<start transaction statement> ::= START TRANSACTION | <transaction
characteristics>]

Start an SQL transaction and set its characteristics. All transactional SQL statements start a transaction automatically,
therefore using this statement is not necessary. If the statement is called in the middle of a transaction, an exception
isthrown.

SET TRANSACTION
set next transaction characteristics

<set transaction statenent> ::= SET [LOCAL] TRANSACTION <transaction
characteristics>

43

HyperS@L Sessions and Transactions

Set the characteristics of the next transaction in the current session. This statement has an effect only on the next
transactions and has no effect on the future transactions after the next.

transaction characteristics

transaction characteristics

<transaction characteristics> ::= [<transaction node> [{ <comma> <transaction
node> }...]]
<transaction nobde> ::= <isolation level> | <transaction access node> |

<di agnostics size>

<transaction access node> ::= READ ONLY | READ WRI TE

<isolation level > ::= | SOLATI ON LEVEL <l evel of isolation>

<l evel of isolation> ::= READ UNCOW TTED | READ COWM TTED | REPEATABLE READ
| SERIALI ZABLE

<di agnostics size> ::= D AGNOSTICS S| ZE <nunber of conditions>

<nunber of conditions> ::= <sinple val ue specification>

Specify transaction characteristics.

Example 3.3. Setting Transaction Characteristics

SET TRANSACTI ON READ ONLY
SET TRANSACTI ON | SOLATI ON LEVEL SERI ALI ZABLE
SET TRANSACTI ON READ WRI TE, | SOLATI ON LEVEL READ COWM TTED

SET CONSTRAINTS
set constraints mode statement

<set constraints npde statement> ::= SET CONSTRAI NTS <constraint nane |ist>
{ DEFERRED | | MVEDI ATE }

<constraint nanme list> ::= ALL | <constraint nanme> [{ <comma> <constraint
nane> }...]

If the statement isissued during atransaction, it appliesto the rest of the current transaction. If the statement isissued
when atransaction is not active then it applies only to the next transaction in the current session. HyperSQL does not
yet support this feature.

LOCK TABLE
lock table statement

<lock table statenent> ::= LOCK TABLE <table name> { READ | WRITE} [, <table
nane> { READ | WRITE} ...]}

In some circumstances, where multiple simultaneous transactions are in progress, it may be necessary to ensure a
transaction consisting of several statements is completed, without being terminated due to possible deadlock. When
this statement is executed, it waits until it can obtain all the listed locks, then returns. If obtaining the locks would
result in a deadlock an error is raised. The SQL statements following this statement use the locks aready obtained

44

HyperS@L

Sessions and Transactions

(and obtain new locks if necessary) and can proceed without waiting. All the locks are released when a COMMIT or

ROLLBACK statement is issued.

When theisolation level of asessionisREAD COMMITTED, read locks are released immediately after the execution
of the statement, therefore you should use only WRITE locks in this mode. Alternatively, you can switch to the
SERIALIZABLE isolation mode before locking the tables for the specific transaction that needs to finish consistently
and without a deadlock. It is best to execute this statement at the beginning of the transaction with the complete list

of required read and write locks.

Currently, this command does not have any effect when the database transaction control model is MV CC.

Example 3.4. Locking Tables

‘ LOCK TABLE table_a WRITE, table_b READ

SAVEPOINT

savepoint statement

<savepoi nt statenent> ::

<savepoi nt specifier> ::

SAVEPO NT <savepoi nt specifier>

<savepoi nt nane>

Establish a savepoint. This command is used during an SQL transaction. It establishes a milestone for the current
transaction. The SAVEPOINT can be used at alater point in the transaction to rollback the transaction to the milestone.

RELEASE SAVEPOINT

release savepoint statement

<rel ease savepoi nt statement> ::= RELEASE SAVEPO NT <savepoi nt specifier>

Destroy a savepoint. This command israrely used asit is not very useful. It removes a SAVEPOINT that has already

been defined.
COMMIT
commit statement

<commit statenent> ::=

COMT [WRK] [AND[NO] CHAIN]

Terminate the current SQL -transaction with commit. This make all the changes to the database permanent.

ROLLBACK
rollback statement

<rol | back statement> ::

ROLLBACK [WORK] [AND [NO] CHAIN]

Rollback the current SQL transaction and terminate it. The statement rolls back all the actions performed during the
transaction. If NO CHAIN is specified, anew SQL transaction is started just after the rollback. The new transaction
inherits the properties of the old transaction.

ROLLBACK TO SAVEPOINT

rollback statement

45

HyperS@L Sessions and Transactions

<rol | back statenent> ::= ROLLBACK [WORK] TO SAVEPO NT <savepoi nt specifier>

Rollback part of the current SQL transaction and continue the transaction. The statement rolls back all the
actions performed after the specified SAVEPOINT was created. The same effect can be achieved with the
rol | back(Savepoi nt savepoi nt) method of the JDBC Connect i on object.

Example 3.5. Rollback

-- performsome inserts, deletes, etc.

SAVEPO NT A

-- performsone inserts, deletes, selects etc.

ROLLBACK WORK TO SAVEPO NT A

-- all the work after the declaration of SAVEPONT A is rolled back

DISCONNECT

disconnect statement

<di sconnect statement> ::= DI SCONNECT

Terminate the current SQL session. Closing a JDBC connection has the same effect as this command.
SET SESSION CHARACTERISTICS

set session characteristics statement

<set session characteristics statenment> ::= SET SESSI ON CHARACTERI STICS AS
<sessi on characteristic list>

<session characteristic list>::= <session characteristic>][{ <comm> <session
characteristic> }...]

<sessi on characteristic> ::= <session transaction characteristics>

<session transaction characteristics> ::= TRANSACTION <transaction npde>
[{ <comma> <transaction nmode> }...]

Set one or more characteristics for the current SQL -session. This command is used to set the transaction mode for the
session. Thisenduresfor al transactions until the session is closed or the next use of this command. The current read-
only mode can be accessed with the ISREADONLY () function.

Example 3.6. Setting Session Characteristics

SET SESSI ON CHARACTERI STI CS AS TRANSACTI ON READ ONLY
SET SESSI ON CHARACTERI STI CS AS TRANSACTI ON | SOLATI ON LEVEL SERI ALI ZABLE
SET SESSI ON CHARACTERI STI CS AS TRANSACTI ON READ WRI TE, | SOLATI ON LEVEL READ COWM TTED

SET SESSION AUTHORIZATION
set session user identifier statement

<set session user identifier statenent> ::= SET SESSI ON AUTHORI ZATI ON <val ue
speci fication>

Set the SQL -session user identifier. This statement changesthe current user. The user that executes this command must
have the CHANGE_AUTHORIZATION role, or the DBA role. After this statement is executed, all SQL statements

46

HyperS@L Sessions and Transactions

are executed with the privileges of the new user. The current authorisation can be accessed with the CURRENT _USER
and SESSION_USER functions.

Example 3.7. Setting Session Authorization

SET SESSI ON AUTHORI ZATI ON ' FELI X'
SET SESSI ON AUTHORI ZATI ON SESSI ON_USER

SET ROLE

set role statement

<set role statenent> ::= SET ROLE <rol e specification>

<rol e specification> ::= <value specification> | NONE

Set the SQL -session role name and the current role name for the current SQL-session context. The user that executes
this command must have the specified role. If NONE is specified, then the previous CURRENT_ROLE is eliminated.
The effect of this lasts for the lifetime of the session. The current role can be accessed with the CURRENT_ROLE
function.

SET TIME ZONE

set local time zone statement

<set local time zone statenent> ::= SET TIME ZONE <set time zone val ue>
<set tine zone value> ::= <interval value expression> | LOCAL

Set the current default time zone displacement for the current SQL-session. When the session starts, the time zone
displacement is set to the time zone of the client. This command changes the time zone displacement. The effect of
this lasts for the lifetime of the session. If LOCAL is specified, the time zone displacement reverts to the local time
zone of the session.

Example 3.8. Setting Session Time Zone

SET TI ME ZONE LOCAL
SET TI ME ZONE | NTERVAL ' +6: 00' HOUR TO M NUTE

SET CATALOG

set catalog statement
<set catal og statement> ::= SET <catal og nane characteristic>
<cat al og name characteristic> ::= CATALOG <val ue speci fication>

Set the default schema name for unqualified names used in SQL statements that are prepared or executed directly in
the current sessions. Asthereisonly one catalog in the database, only the name of this catalog can be used. The current
catalog can be accessed with the CURRENT_CATALOG function.

SET SCHEMA
set schema statement

<set schema statenent> ::= SET <schema nane characteristic>

47

HyperS@L Sessions and Transactions

<schema nane characteristic> ::= SCHEMA <val ue specification> | <schema nane>

Set the default schema name for unqualified names used in SQL statements that are prepared or executed directly in
the current sessions. The effect of thislastsfor thelifetime of the session. The SQL Standard form requires the schema
name as a single-quoted string. HyperSQL aso alows the use of the identifier for the schema. The current schema
can be accessed with the CURRENT_SCHEMA function.

SET PATH

set path statement

<set path statenent> ::= SET <SQ.-path characteristic>
<SQL-path characteristic> ::= PATH <val ue specification>

Set the SQL-path used to determine the subject routine of routine invocations with unqualified routine names used in
SQL statements that are prepared or executed directly in the current sessions. The effect of this lasts for the lifetime
of the session.

SET MAXROWS
Set max rows statement
<set max rows statenent> ::= SET MAXROAS <unsigned integer literal>

The normal operation of the session has no limit on the number of rows returned from a SELECT statement. This
command set the maximum number of rows of the result returned by executing queries.

This statement has a similar effect to the set MaxRows (i nt nmax) method of the JDBC St at enent interface,
but it affects the results returned from the next statement execution only. After the execution of the next statement,
the MAXROWS limit is removed.

Only zero or positive values can be used with this command. The value overrides any value specified with
set MaxRows (i nt nmax) method of a JDBC statement. The statement SET MAXROAS 0 means no limit.

It is possible to limit the number of rows returned from SELECT statements with the FETCH <n> ROWS ONLY, or
its aternative, LIMIT <n>. Therefore, this command is not recommended for general use. The only legitimate use of
this command is for checking and testing queries that may return very large numbers of rows.

SET SESSION RESULT MEMORY ROWS
set session result memory rows statement

<set session result nenory rows statenent> ::= SET SESSI ON RESULT MEMORY ROW\S
<unsi gned integer literal >

By default, the session uses memory to build result sets, subquery results, and temporary tables. This command sets
the maximum number of rows of the result (and temporary tables) that should be kept in memory. If the row count
of the result or temporary table exceeds the setting, the result is stored on disk. The default is 0, meaning all result
sets are held in memory.

This statement applies to the current session only. The general database setting is:
SET DATABASE DEFAULT RESULT MEMORY ROWS <unsigned integer literal >
SET IGNORECASE

set ignore case statement

48

HyperS@L Sessions and Transactions

<set ignore case statenent> ::= SET | GNORECASE { TRUE | FALSE }
Thisisalegacy method for creating case-insensitive columns. Still supported but not recommended for use.

Sets the type used for new VARCHAR table columns. By default, character columns in new databases are case-
sensitive. If SET | GNORECASE TRUE is used, all VARCHAR columns in new tables are set to use a collation
that converts strings to uppercase for comparison. In the latest versions of HyperSQL you can specify the collations
for the database and for each column and have some columns case-sensitive and some not, even in the same table.
The collation's strength is used to force case-insensitive comparison. Collations are discussed in the Schemas and
Database Objects chapter.

This statement must be switched before creating tables. Existing tables and their data are not affected.

49

HyperS@L

Chapter 4. Schemas and Database Objects

Fred Toussi, The HSQL Development Group
$Revision: 6135 $

Copyright 2009-2020 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.

2020-06-29

Overview

This chapter discusses features of HyperSQL in the context of the SQL Standard. Strings enclosed in angle brackets
(for example<i dent i fi er >) are SQL syntax elements.

The persistent elements of an SQL environment are database objects. The database consists of catalogs plus
authorizations.

A catalog contains schemas, and schemas contain the objects that contain data or govern the data. Authorizations are
user names.

Each catalog contains a special schema called INFORMATION_SCHEMA. This schema is read-only and contains
some views and other schema objects. The views contain lists of all the database objects that exist within the catalog,
plus al authorizations.

Each database object has aname. A nameis an identifier and is unique within its name-space.

Schemas and Schema Objects

In HyperSQL, thereis only one catalog per database. The name of the catalog is PUBLIC. Y ou can rename the catalog
with the ALTER CATALOG RENAME TOstatement. All schemas belong to this catalog. The catalog name has no
relation to the file name of the database.

Each database has also an internal "unique" name which isautomatically generated when the databaseis created. This
nameis used for event logging. Y ou can also change this unique name.

Schema objects are database objects that contain data or govern or perform operations on data. By definition, each
schema object belongs to a specific schema.

Schema objects can be divided into groups according to their characteristics.

» Some kinds of schema objects can exist independently from other schema object. Other kinds can exist only as an
element of another schema object. These dependent objects are automatically destroyed when the parent object is
dropped.

e There are multiple name-spaces within each schema. Separate name-spaces exists for different kinds of schema
object. Some name-spaces are shared between two similar kinds of schema objects.

 There can be dependencies between various schema objects, as some kinds of schema objects can include references
to other schema objects. These references can cross schema boundaries. Interdependence and cross referencing
between schema objectsis allowed in some circumstances and disallowed in some others.

50

HyperS@L Schemas and Database Objects

 Schema objects can be destroyed with the DROP statement. |f dependent schema objects exist, a DROP statement
will succeed only if it has a CASCADE clause. Dependent objects are also destroyed in most cases; but in some
cases, such as dropping DOMAIN objects, the dependent objects are not destroyed, but modified to remove the
dependency.

A new HyperSQL catalog contains an empty schema called PUBLIC. By default, this schema is the initia schema
when anew session is started. New schemas and schema objects can be defined and used in the PUBLIC schema, as
well as any new schemathat is created by the user. Y ou can rename the PUBLIC schema.

HyperSQL allows all schemas to be dropped, except the schema that is the default initial schema for new sessions
(by default, the PUBLIC schema). For this schema, a DROP SCHEMA ... CASCADE statement will succeed but will
result in an empty schema, rather than no schema.

The statements for setting the initial schema for users are described in the Statements for Authorization and Access
Control chapter.

Names and References

The name of a schema object is an <i dent i fi er >. The name belongs to the name-space for the particular kind
of schema object. The name is unique within its name-space. For example, each schema has a separate name-space
for TRIGGER objects.

In addition to the name-spaces in the schema. Each table has a name-space for the names of its columns.

Because a schema object is aways in a schema and a schema always in a catalog, it is possible, and sometimes
necessary, to qualify the name of the schema object that is being referenced in an SQL statement. This is done
by forming an <i denti fi er chai n>. In some contexts, only asimple <i denti fi er > can be used and the
<identifier chain> isprohibited. While in some other contexts, the use of <i dentifier chain>is
optional. Anidentifier chainisformed by qualifying each object with the name of the object that owns its name-space.
Therefore, acolumn nameis prefixed with a table name, a table name is prefixed with a schema name, and a schema
nameis prefixed with a catalog name. A fully qualified column nameisintheform <cat al og nane>. <schenm
nanme>. <t abl e nanme>. <col umm nane>, likewise, afully qualified sequence nameisintheform<cat al og
nanme>. <schema nane>. <sequence nane>.

HyperSQL extends the SQL standard to allow renaming all database objects. The ALTER ... RENAME TO command

has dlightly different forms depending on the type of object. If an object is referenced in a VIEW or ROUTINE
definition, it is not always possible to renameit.

Character Sets

A CHARACTER SET isthe whole or asubset of the UNICODE character set.
A character set namecan only bea<r egul ar i denti fi er >. Thereisaseparate name-space for character sets.

There are severa predefined character sets. These character sets belong to INFORMATION_SCHEMA. However,
when they are referenced in a statement, no schema prefix is necessary.

The following character sets, together with some others, have been specified by the SQL Standard:
SQL_CHARACTER, SQL_TEXT, SQL_IDENTIFIER
TheSQL_CHARACTER consistsof ASCII letters, digitsand the symbolsused inthe SQL languageitself. SQL_TEXT

and SQL_IDENTIFIER areimplementation defined. HyperSQL defines SQL_TEXT asthe Unicode character set and
SQL_IDENTIFIER as the Unicode character set minus the SQL |anguage special characters.

51

HyperS@L Schemas and Database Objects

SQL_TEXT consistsof thefull set of Unicode characters. These characters can be used in strings and clobs stored in the
database. The character repertoire of HyperSQL isthe UTF16 character set, which covers all possible character sets.

If a predefined character set is specified for a table column, then any string stored in the column must contain only
characters from the specified character set. HyperSQL does not enforce the CHARACTER SET that is specified for
acolumn and may accept any character string supported by SQL_TEXT.

Collations

A COLLATION is the method used for ordering character strings in ordered sets and to determine equivalence of
two character strings.

The system collation is called SQL_TEXT. This collation sorts according to the Unicode code of the characters,
UNICODE_SIMPLE. The system collation is always used for INFORMATION_SCHEMA tables.

The default database collation is the same as the system collation. Y ou can change this default, either with alanguage
collation, or withthe SQL_TEXT_UCC. Thiscollationisacase-insensitiveform of the UNICODE_SIMPLE collation.

Collations for a large number of languages are supported by HyperSQL. These collations belong to
INFORMATION_SCHEMA. However, when they are referenced in astatement, thereis no need for a schema prefix.

A different collation than the default collation can be specified for each table column that is defined as CHAR or
VARCHAR.

A collation can also be used in an ORDER BY clause.

A collation can be used in the GROUP BY clause.

CREATE TABLE t (id | NTEGER PRI MARY KEY, name VARCHAR(20) COLLATE "English")
SELECT * FROMt ORDER BY nane COLLATE " French"
SELECT COUNT(*), nanme FROMt GROUP BY nane COLLATE "English 0"

In the examples above, the collation for the column is aready specified when it is defined. In the first SELECT
statement, the column is sorted using the French collation. In the second SELECT, the " Engl i sh 0" collation is
used in the GROUP BY clause. This collation is case insensitive, so the same name with different uses of upper and
lower-case letters is considered the same and counted together.

The supported collations are named according to the language. You can see the list in the
INFORMATION_SCHEMA.COLLATIONS view. You can use just the name in double quotes for the default form
of the collation. If you add a strength between 0, 1, 2, 3, the case sensitivity and accent sensitivity changes. The value
0 indicates least sensitivity to differences. At this strength the collation is case-insensitive and ignores differences
between accented letters. At strength 1, differences between accented letters are taken into account. At strength 2, both
case and accent are significant. Finally, 3 indicates additional sensitivity to different punctuation. A second parameter
can aso be used with values 0 or 1, to indicate how decomposition of accented characters for comparison is handled
for languages that support such characters. See the Java and ICU (International Components for Unicode) collation
documentation for more details on these values. For example, possible forms of the French collation are” Fr ench”,
"French 0","French 1", etc.,and"French 2 1", etc. When the collation is specified without strength, it
seems the system defaults to strength 2, which is case and accent sensitive.

When a collation is not explicitly used in the CREATE TABLE statement for a column, then the database default
collationisused for thiscolumn. If you change the database default collation afterwards, the new collation will be used.

With the older versions of HyperSQL the special type VARCHAR_IGNORECA SE was used as the column type for
case-insensitive comparison. Any column aready defined as VARCHAR_IGNORECASE will be compared exactly
as before. In version 2.3.0 and later, this form is represented by the addition of UCC after the collation name, for
example "French UCC". Y ou can still usethe SET IGNORECA SE TRUE statement in your session to force the UCC

52

HyperS@L Schemas and Database Objects

to be applied to the collation for the VARCHAR columns of new tables. UCC stands for Upper Case Comparison.
Before comparing two strings, both are converted to uppercase using the current collation. This is exactly how
VARCHAR_IGNORECA SE worked.

It is recommended to use the default SQL_TEXT collation for your general CHAR or VARCHAR columns. For
columns where a language collation is desirable, the choice should be made very carefully, because names that are
very similar but only differ in the accents may be considered equal in searches.

When comparing two strings, HyperSQL 2.x pads the shorter string with spaces in order to compare two strings of
equal length. Y ou can change the default database collation with one that does not pad the string with spaces before
comparison. This method of comparison was used in versions older than 2.0.

User defined collations can be created based on existing collations to control the space padding. These collations are
part of the current schema.

See the COLLATE keyword and SET DATABASE COLLATION statement in the System Management chapter.
The PAD SPACE or NO PAD clauseis used to control padding.

I mportant
!

If you change the default collation of a database when there are tables containing data with CHAR or
VARCHAR columns that are part of an index, a primary key or a unique constraint, you must execute
SHUTDOWN COMPACT or SHUTDOWN SCRIPT after the change. If you do not do this, your queries
and other statements will show erratic behaviour and may result in unrecoverable errors.

Distinct Types

A distinct, user-defined TY PE is simply based on a built-in type. A distinct TY PE is used in table definitions and in
CAST statements.

Distinct types share a name-space with domains.

Domains

A DOMAIN is a user-defined type, simply based on a built-in type. A DOMAIN can have constraints that limit the
values that the DOMAIN can represent. A DOMAIN can be used in table definitions and in CAST statements.

Distinct types share a name-space with domains.

Number Sequences

A SEQUENCE object produces INTEGER valuesin sequence. The SEQUENCE can be referenced in special contexts
only within certain SQL statements. For each row where the object is referenced, its value isincremented.

There is a separate name-space for SEQUENCE objects.

IDENTITY columns are columns of tables which have an internal, unnamed SEQUENCE object. HyperSQL also
supports IDENTITY columns that use a named, external, SEQUENCE object.

SEQUENCE objectsand IDENTITY columns are supported fully according to the latest SQL Standard syntax.
Sequences

The SQL Standard syntax and usage is different from what is supported by many existing database engines. Sequences
are created with the CREATE SEQUENCE command and their current value can be modified at any time with ALTER

53

HyperS@L Schemas and Database Objects

SEQUENCE. The next value for a sequence is retrieved with the NEXT VALUE FOR <nane> expression. This
expression can be used for inserting and updating table rows.

Example 4.1. inserting the next sequence valueinto atablerow

‘ I NSERT | NTO nytabl e VALUES 2, 'John', NEXT VALUE FOR nysequence

You can also use it in select statements. For example, if you want to number the returned rows of a SELECT in
sequential order, you can use:

Example 4.2. numbering returned rows of a SELECT in sequential order

‘ SELECT NEXT VALUE FOR nysequence, col 1, col2 FROM nytabl e WHERE . ..

The semantics of sequences are exactly as defined by SQL:2016. If you use the same sequence twice in the same row
inan INSERT statement, you will get the same value, as required by the Standard.

The correct way to use a sequence value isthe NEXT VALUE FOR expression.

HyperSQL adds an extension to Standard SQL to return the last value returned by the NEXT VALUE FOR expression
in the current session. After a statement containing NEXT VALUE FOR is executed, the value that was returned for
NEXT VALUE FOR is available using the CURRENT VALUE FOR expression. In the example below, the NEXT
VALUE FOR expression isused to insert anew row. The value that was returned by NEXT VALUE FOR isretrieved
with the CURRENT VALUE FOR in the next insert statements to popul ate two new rows in a different table that has
a parent child relationship with the first table. For example, if the value 15 was returned by the sequence, the same
value 15 isinserted in the three rows.

Example 4.3. using the last value of a sequence

I NSERT | NTO nytabl e VALUES 2, 'John', NEXT VALUE FOR nysequence
I NSERT | NTO chi | dt abl e VALUES 4, CURRENT VALUE FOR nysequence
I NSERT | NTO chi | dt abl e VALUES 5, CURRENT VALUE FOR nysequence

The INFORMATION_SCHEMA.SEQUENCES table contains the next value that will be returned from any of the
defined sequences. The SEQUENCE_NAM E column contains the name and the NEXT_VALUE column containsthe
next value to be returned. Note that thisis only for getting information and you should not use it for accessing the next
seguence value. When multiple sessions access the same sequence, the value returned from this table by one session
could be used by a different session, causing a sequence value to be used twice unintentionally.

Identity Auto-Increment Columns

Each table can contain a single auto-increment column, known asthe IDENTITY column. AnIDENTITY columnisa
SMALLINT, INTEGER, BIGINT, DECIMAL or NUMERIC columnwithitsvalue generated by asequence generator.

In HyperSQL 2.x, an IDENTITY column is not by default treated as the primary key for the table (as aresult, multi-
column primary keys are possible with an IDENTITY column present). Use the SQL standard syntax for declaration
of the IDENTITY column.

The SQL standard syntax is used, which alows the initial value and other options to be specified.

<col name> [INTEGER | BIGNT | DECIMAL | NUMERI C | GENERATED { BY DEFAULT |
ALWAYS} AS | DENTITY [(<options>)]

/* this table has no primary key */
CREATE TABLE vals (id | NTEGER GENERATED BY DEFAULT AS | DENTITY, data VARBI NARY(2000))

HyperS@L Schemas and Database Objects

/* in this table id becomes primary key because the old syntax is used - avoid this syntax */
CREATE TABLE vals (id I NTEGER | DENTITY, data VARBI NARY(2000))

/* use the standard syntax and explicity declare a primary key identity colum */
CREATE TABLE vals (id | NTEGER GENERATED BY DEFAULT AS | DENTI TY PRI MARY KEY, data
VARBI NARY(2000))

When you add a new row to such atable using an | NSERT | NTO <t abl enanme> ... statement, you can use
the DEFAULT keyword for the IDENTITY column, which results in an auto-generated value for the column.

Thel DENTI TY() function returnsthelast valueinserted into any IDENTITY column by this session. Each session
manages this function call separately and is not affected by insertsin other sessions. Use CALL | DENTI TY() as
an SQL statement to retrieve this value. If you want to use the value for afield in a child table, you can use | NSERT
| NTO <chil dtabl e> VALUES (..., IDENTITY(),...);.Bothtypesof cal to | DENTI TY() must be
made before any additional update or insert statements are issued by the session.

Intriggersand routines, the valuereturned by thel DENTI TY() functioniscorrect for the given context. For example,
if a call to a stored procedure inserts a row into a table, causing a new identity value to be generated, a call to
| DENTI TY() inside the procedure will return the new identity, but a call outside the procedure will return the last
identity value that was generated before a call was made to the procedure.

Thelastinserted IDENTITY value can also beretrieved via JDBC, by specifying the Statement or PreparedStatement
object to return the generated value.

The next IDENTITY value to be used can be changed with the following statement. Note that this statement is not
used in normal operation and is only for special purposes, for example resetting the identity generator:

‘ ALTER TABLE <t abl e nane> ALTER COLUWN <col utm nanme> RESTART W TH <new val ue>;

For backward compatibility, support has been retained for CREATE TABLE <t abl enane>(<col nane>
| DENTI TY, ...) asashortcut which defines the column both as an IDENTITY column and a PRIMARY KEY
column. Also, for backward compatibility, it is possible to use NULL as the value of an IDENTITY column in an
INSERT statement and the value will be generated automatically. Y ou should avoid these compatibility features as
they may be removed from future versions of HyperSQL.

In the following example, the identity value for the first INSERT statement is generated automatically using the
DEFAULT keyword. The second INSERT statement uses acall to the IDENTITY () function to populate arow in the
child table with the generated identity value.

CREATE TABLE star (id | NTEGER GENERATED BY DEFAULT AS | DENTI TY PRI MARY KEY,
firstnane VARCHAR(20),
| ast name VARCHAR(20))
CREATE TABLE novies (starid | NTEGER, novieid | NTEGER PRI MARY KEY, title VARCHAR(40))
I NSERT I NTO star (id, firstnane, |astnane) VALUES (DEFAULT, 'Felix', 'the Cat')
I NSERT | NTO novies (starid, novieid, title) VALUES (IDENTITY(), 10, 'Felix in Hollywood')

HyperSQL also supports IDENTITY columnsthat use an external, named SEQUENCE object. Thisfeatureis not part
of the SQL Standard. The example below uses this type of IDENTITY. Note the use of CURRENT VALUE FOR
seq here is multi-session safe. The returned value is the last value used by this session when the row was inserted
into the star table. This value is available until the transaction is committed. After commit, NULL is returned by the
CURRENT VALUE FOR expression until the SEQUENCE is used again.

CREATE SEQUENCE seq
CREATE TABLE star (id | NTEGER GENERATED BY DEFAULT AS SEQUENCE seq PRI MARY KEY,
firstnane VARCHAR(20),
| ast name VARCHAR(20))
CREATE TABLE novies (starid |INTEGER novieid | NTEGER PRI MARY KEY, title VARCHAR(40))
-- the first insert uses the next value fromthe sequence seq

55

HyperS@L Schemas and Database Objects

I NSERT I NTO star (id, firstname, |astnane) VALUES (DEFAULT, 'Felix', 'the Cat')

-- the second insert uses CURRENT VALUE to insert the same auto-generated value into the other
tabl e

I NSERT | NTO novies (starid, novieid, title) VALUES (CURRENT VALUE FOR seq, 10, 'Felix in

Hol | ywood')

Tables

In the SQL environment, tables are the most essential components, as they hold all persistent data.

If TABLE is considered as metadata (without its actual data) it is called arelation in relational theory. It has one or
more columns, with each column having a distinct name and a data type. A table usually has one or more constraints
which limit the values that can potentially be stored inthe TABLE. These constraints are discussed in the next section.

A single column of thetable can be defined asIDENTITY . The values stored in this column are auto-generated and are
based on an (unnamed) identity sequence, or optionally, a named SEQUENCE object. One or more other columns of
thetable can be defined as GENERATED by an expression that returnsaval ue based on other columns of the samerow.

Views

A VIEW is similar to a TABLE but it does not permanently contain rows of data. A view is defined as a QUERY
EXPRESSION, which is often a SELECT statement that references views and tables, but it can also consist of a
TABLE CONSTRUCTOR that does not reference any tables or views.

A view has many uses:

« Hide the structure and column names of tables. The view can represent one or more tables or views as a separate
table. This can include aggregate data, such as sums and averages, from other tables.

» Allow accessto specific rowsin atable. For example, records that were added since a given date.

» Allow accessto specific columns. For example, access to columns that contain non-confidential information. Note
that this can also be achieved with the GRANT SELECT statement, using column-level privileges

A VIEW that returns the columns of asingle ordinary TABLE is updatable if the query expression of the view is an
updatable query expression asdiscussed inthe DataAccessand Change chapter. Some updatableviewsareinsertabl e-
into because the query expression is insertable-into. In these views, each column of the query expressions must be a
column of the underlying table and those columns of the underlying table that are not in the view must have a default
clause, or bean IDENTITY or GENERATED column. When rows of an updatable view are updated, or new rows are
inserted, or rows are deleted, these changes are reflected in the base table. A VIEW definition may specify that the
inserted or updated rows conform to the search condition of the view. Thisis done with the CHECK OPTION clause.

A view that is not updatable according to the above paragraph can be made updatable or insertable-into by adding
INSTEAD OF triggersto the view. These triggers contain statements to use the submitted data to modify the contents
of the underlying tables of the view separately. For example, a view that represents a SELECT statement that joins
two tables can have an INSTEAD OF DELETE trigger with two DEL ETE statements, one for each table. Views that
have an INSTEAD OF trigger are called TRIGGER INSERTABLE, TRIGGER UPDATABLE, etc., according to the
triggers that have been defined.

Views share a name-space with tables.
Constraints

A CONSTRAINT isachild schema object and can belongto aDOMAIN or aTABLE. CONSTRAINT objects can be
defined without specifying aname. In this case the system generates anamefor the new object beginningwith"SYS ",

56

HyperS@L Schemas and Database Objects

This default naming can be changed with the SET DATABASE SQL SYS | NDEX NAMES TRUE statement, to
use the constraint name as the name of the index.

InaDOMAIN, CHECK constraints can be defined that limit the value represented by the DOMAIN. These constraints
work exactly like a CHECK constraint on a single column of atable as described below.

InaTABLE, aconstraint takes three basic forms.
CHECK

A CHECK constraint consistsof a<sear ch condi t i on> that must not be false (can be unknown) for each row of
thetable. The<sear ch condi ti on> canreferenceall the columns of the current row. HyperSQL does not support
the optional feature of the SQL Standard that allows a <subquer y> referencing tables and views in the database
ina<search condition>.

NOT NULL
A simple form of check constraint isthe NOT NULL constraint, which appliesto a single column.
UNIQUE

A UNIQUE constraint is based on an equality comparison of values of specific columns (taken together) of one row
with the same values from each of the other rows. The result of the comparison must never be true (can be false or
unknown). If a row of the table has NULL in any of the columns of the constraint, it conforms to the constraint. A
unique constraint on multiple columns (c1, c2, ¢3, ..) meansthat in no two rows, the sets of values for the columns can
be equal unless at least one of them is NULL. Each single column taken by itself can have repeat values in different
rows. The following example satisfies a UNIQUE constraint on the two columns

Example 4.4. Column values which satisfy a 2-column UNIQUE constraint

1, 2
2, 1
2, 2
NULL, 1
NULL, 1
1, NULL
NULL, NULL
NULL, NULL

If the SET DATABASE SQL UNIQUE NULLSFALSE hasbeen set, then if not all the values set of columnsare null,
the not null values are compared and it is disallowed to insert identical rows that contain at least one not-null value.

PRIMARY KEY

A PRIMARY KEY constraint is equivalent to a UNIQUE constraint on one or more NOT NULL columns. Only one
PRIMARY KEY can be defined in each table,

FOREIGN KEY

A FOREIGN key constraint is based on an equality comparison between values of specific columns (taken together)
of each row with the values of the columns of a UNIQUE constraint on another table or the same table. The result
of the comparison must never be false (can be unknown). A special form of FOREIGN KEY constraint, based on its
CHECK clause, allows the result to be unknown only if the values for al columns are NULL. A FOREIGN key can
be declared only if a UNIQUE constraint exists on the referenced columns.

Constraints share a name space with assertions.

57

HyperS@L Schemas and Database Objects

Assertions

An ASSERTION is atop-level schema object. It consists of a<sear ch condi t i on> that must not be false (can
be unknown). HyperSQL does not yet support assertions.

Assertions share a hame-space with constraints

Triggers

A TRIGGER is achild schema object that aways belongstoaTABLE or aVIEW.

Each time a DELETE, UPDATE or INSERT is performed on the table or view, additional actions are taken by the
triggers that have been declared on the table or view.

Triggers are discussed in detail in Triggers chapter.

There is a separate name space for triggers.

Routines

Routines are user-defined functions or procedures. The names and usage of functions and procedures are different.
FUNCTION is aroutine that can be referenced in many types of statements. PROCEDURE is a routine that can be
referenced only in a CALL statement.

There is a separate name-space for routines.

Because of the possibility of overloading, each routine can have more than one name. The name of the routine is
the same for all overloaded variants, but each variant has a specific name, different from all other routine names and
specific names in the schema. The specific name can be specified in the routine definition statement. Otherwise it is
assigned by the engine. The specific nameisused only for schema manipulation statements, which need to reference a
specific variant of the routine. For example, if aroutine has two signatures, each signature has its own specific name.
This allows the user to drop one of the signatures while keeping the other.

Routines are discussed in detail in the SQL-Invoked Routines chapter.

Indexes

Indexes are an implementation-defined extension to the SQL Standard. HyperSQL has a dedicated name-space for
indexes in each schema.

Synonyms

Synonyms are user-defined names that refer to other schema objects. Synonyms can be defined for TABLE, VIEW,
SEQUENCE, PROCEDURE and FUNCTION names and used in SELECT, UPDATE, CALL, etc. statements. They
cannot be used in DDL statements. Synonym are in schemas, but they are used without a schemaqualifier. When used,
asynonym isimmediately translated to the target name and the target name is used in the actual statement. The access
privileges to the target object are checked.

CREATE SYNONYM REG FOR OTHER_SCHEMA. REG STRATI ON_DETAI L_TABLE

SELECT R I D, R _DATE FROM REG WHERE R _DATA > CURRENT_DATE - 3 DAY

A synonym cannot be the same as the name of any existing object in the schema.

58

HyperS@L Schemas and Database Objects

Statements for Schema Definition and Manipulation

Schemas and schema objects can be created, modified, and dropped. The SQL Standard defines arange of statements
for this purpose. HyperSQL supports many additional statements, especially for changing the properties of existing
schema objects.

Common Elements and Statements

These elements and statements are used for different types of object. They are described here, before the statements
that can use them.

identifier
definition of identifier

<identifier> ::= <regular identifier>| <delimted identifier>| <SQ |anguage
identifier>

<delimted identifier> ::= <doubl e quote> <character sequence> <doubl e quote>
<regul ar identifier> ::= <special character sequence>
<SQ@. |l anguage identifier> ::= <special character sequence>

A<delimted identifier>isasequence of characters enclosed with double-quote symbols. All characters
are allowed in the character sequence.

A <regul ar identifier>isaspecia sequence of characters. It consists of letters, digits, and the underscore
characters. It must begin with aletter. All the letters are trandated to their upper-case version.

The database setting, SET DATABASE SQL REGULAR NAMES FALSE can be used to relax the rules for regular
identifier. With this setting, an underscore character can appear at the start of the regular identifier, and the dollar sign
character can be used in the identifier.

A <SQL | anguage i dentifier>issimilarto<regul ar identifi er> buttheletterscanrangeonly from
A-Z inthe ASCII character set. Thistype of identifier is used for names of CHARACTER SET objects.

If the character sequence of a delimited identifier is the same as an undelimited identifier, it represents the same
identifier. For example, "JOHN" is the same identifier as JOHN. Ina<r egul ar i denti fi er > the case-normal
formis considered for comparison. Thisform consists of the upper-case equivaent of al the letters. When a database
object is created with one of the CREATE statements or renamed with the ALTER statement, if the name is enclosed
in double quotes, the exact name is used as the case-normal form. But if it is not enclosed in double quotes, the name
is converted to uppercase and this uppercase version is stored in the database as the case-normal form.

The character sequence length of al identifiers must be between 1 and 128 characters.

A reserved word is one that is used by the SQL Standard for specia purposes. It is similar to a <r egul ar
i denti fi er> butit cannot be used as an identifier for user objects. If areserved word is enclosed in double quote
characters, it becomes a quoted identifier and can be used for database objects.

Case sensitivity rulesfor identifiers can be described simply as follows:

« al parts of SQL statements are converted to upper case before processing, except identifiers in double quotes and
strings in single quotes

« identifiers, both unquoted and double quoted, are then treated as case-sensitive

59

HyperS@L Schemas and Database Objects

» most database engines follow the same rule, except, in some respects, PostgreSQL, MySQL and M S SQL Server.

CASCADE or RESTRICT
drop behavior
<drop behavior> ::= CASCADE | RESTRI CT

The <drop behavi or > isarequired element of statements that drop a SCHEMA or a schema object. If <dr op
behavi or > is not specified then RESTRI CT isimplicit. It determines the effect of the statement if there are other
objects in the catalog that reference the SCHEMA or the schema object. If RESTRICT is specified, the statement
failsif there are referencing objects. If CASCADE is specified, all the referencing objects are modified or dropped
with cascading effect. Whether a referencing object is modified or dropped, depends on the kind of schema object
that is dropped.

IF EXISTS
drop condition (Hyper SQL)
<if exists clause> ::= |F EXI STS

Thisclauseisnot part of the SQL standard andisaHyperSQL extension to some commandsthat drop objects (schemas,
tables, views, sequences, and indexes). If it is specified, then the statement does not return an error if the drop statement
isissued on a hon-existent object.

IF NOT EXISTS
create condition (HyperSQL)
<if not exists clause> ::= |F NOTI' EX STS

This clause is not part of the SQL standard and is a HyperSQL extension to CREATE statements that create schemas,
tables, views, sequences and indexes, as well as ALTER TABLE ... ADD CONSTRAINT and ADD COLUMN
statements. If it is specified, then the statement does not return an error if the CREATE or ALTER statement is for
an object name that aready exists.

SPECIFIC

specific routine designator

<specific routine designator> ::= SPECIFIC <routine type> <specific nane>
<routine type> ::= ROUTINE | FUNCTION | PROCEDURE

This clause is used in statements that need to specify one of the multiple versions of an overloaded routine. The

<speci fi c name> isthe one specified inthe <r out i ne defi ni ti on> statement. The keyword ROUTI NE
can be used instead of either FUNCTI ON or PROCEDURE.

Renaming Objects

RENAME
rename statement (Hyper SQL)

<renane statenment> ::= ALTER <object type> <nane> RENAME TO <new nane>

60

HyperS@L Schemas and Database Objects

<obj ect type> ::= CATALOG | SCHEMA | DOMAIN | TYPE | TABLE | CONSTRAINT | | NDEX
| ROUTINE | SPECI FI C ROUTI NE

<colum renane statenent> ::= ALTER TABLE <table nanme> ALTER COLUW <nanme>
RENAME TO <new nane>

This statement is used to rename an existing object. It is not part of the SQL Standard. The specified <nane> isthe
existing name, which can be qualified with a schema name, while the <new nane> isthe new name for the object.

Commenting Objects
COMMENT
comment statement (Hyper SQL)

<comment statenent> ::= COMMENT ON { TABLE | COLUWN | ROUTINE | SEQUENCE |
TRI GGER} <name> | S <character string literal >

Adds a comment to the object metadata, which can later be read from an INFORMATION_SCHEMA view. This
command is not part of the SQL Standard. The strange syntax is due to compatibility with other database engines that
support the statement. The <nane> isthe name of atable, view, column or routine. The name of the column consists
of dot-separated <t abl e name> <peri od> <col unm nane>. The name of thetable, view or routine can be
asimple name. All names can be qualified with a schemaname. If there is already a comment on the object, the new
comment will replace it. Comments can be added to views and their columns using the TABLE keyword.

The comments appear in the results returned by JDBC DatabaseMetaData methods, get Tabl es() and
get Col umms() . The | NFORVATI ON_SCHEMA. SYSTEM COWMENTS view contains the comments. You can
query this view using the schema name, object name, and column name to retrieve the comments.

Schema Creation

CREATE SCHEMA
schema definition

The CREATE_SCHEMA or DBA roleis required in order to create a schema. A schema can be created with or without
schema objects. Schema objects can always be added after creating the schema, or existing ones can be dropped.
Within the <schena defi ni ti on> statement, all schema object creation takes place inside the newly created
schema. Therefore, if aschemanameis specified for the schema objects, the name must match that of the new schema.
In addition to statementsfor creating schema objects, the statement can include instances of <gr ant st at enent >
and <rol e definition>. Thisisacurious aspect of the SQL standard, as these elements do not really belong
to schema creation.

<schemm definition> ::= CREATE SCHEMA <schema nane cl ause> [<schema character
set specification>] [<schema elenent>. ..]
<schema nane cl ause> :: = <schena nanme> | AUTHORI ZATI ON <aut hori zation identifier>

| <schema nane> AUTHORI ZATI ON <aut hori zation identifier>

If the name of the schemaiis specified simply as<schema nane>, then the AUTHORIZATION isthe current user.
Otherwise, the specified <aut hori zati on identifier>isusedasthe AUTHORIZATION for the schema.
If <schema nane> is omitted, then the name of the schema is the same as the specified <aut hori zati on
identifier>.

<scherma el enent> :: = <table definition>| <viewdefinition>]| <donain definition>
| <character set definition> | <collation definition> | <transliteration

61

HyperS@L Schemas and Database Objects

definition> | <assertion definition> | <trigger definition> | <user-defined
type definition> | <user-defined cast definition> | <user-defined ordering
definition> | <transform definition> | <schema routine> | <sequence generator
definition> | <grant statenent> | <role definition>

An example of the statement is given below. Note that a single semicolon appears at the end. There should be no
semicolon between the statements:

CREATE SCHEMA ACCOUNTS AUTHORI ZATI ON DBA
CREATE TABLE AB(A | NTEGER, ...)
CREATE TABLE CD(C CHAR(10), ...)
CREATE VIEW VI AS SELECT ...
GRANT SELECT ON AB TO PUBLIC
GRANT SELECT ON CD TO JOE;

It is not really necessary to create a schema and all its objects as one command. The schema can be created first, and
its objects can be created one by one.

DROP SCHEMA
drop schema statement

<drop schena statenment> ::= DROP SCHEMA [| F EXI STS] <schema nane> [| F EXI STS]
<dr op behavi or >

This command destroys an existing schema. If <dr op behavi or > is RESTRI CT, the schema must be empty,
otherwise an error is raised. If CASCADE is specified as <dr op behavi or >, then al the objects contained in the
schema are destroyed with a CASCADE option.

Table Creation

CREATE TABLE
table definition

<table definition> ::= CREATE [{ <table scope> | <table type>}] TABLE [IF
NOT EXI STS] <table name> <table contents source> [WTH SYSTEM VERSI ONI NG]
[ON COWM T { PRESERVE | DELETE } ROWS]

<tabl e scope> ::= { GLOBAL | LOCAL } TEMPORARY

<table type> :: = MEMORY | CACHED

<tabl e contents source> ::= <table elenent |list> | <as subquery clause>
<table element list> ::= <left paren> <table elenment> [{ <comma> <table
elenent> }...] <right paren>

<table elenent> ::= <colum definition> | <table period definition> | <table

constraint definition> | <like clause>
like clause

A <li ke cl ause> copiesall column definitions from another table into the newly created table. Its three options
indicateif the<def aul t cl ause>,<i dentity col unm specificati on>and<generati on cl ause>
associated with the column definitions are copied or not. If an option is not specified, it defaultsto EXCLUDI NG. The
<gener ati on cl ause> refersto columns that are generated by an expression but not to identity columns. All

62

HyperS@L Schemas and Database Objects

NOT NULL constraints are copied with the original columns, other constraints are not. The<l i ke cl ause> can
be used multiple times, allowing the new table to have copies of the column definitions of one or more other tables.

‘ CREATE TABLE t (id | NTEGER PRI MARY KEY, LIKE atable | NCLUDI NG DEFAULTS EXCLUDI NG | DENTI TY) ‘

<like clause> ::= LIKE <table name> [<like options>]

<like options> ::= <like option>...

<like option> ::= <identity option> | <colum default option> | <generation
option>

<identity option> ::= INCLUDI NG | DENTI TY | EXCLUDI NG | DENTI TY

<colum default option> ::= | NCLUDI NG DEFAULTS | EXCLUDI NG DEFAULTS
<generation option> ::= | NCLUDI NG GENERATED | EXCLUDI NG GENERATED

as subquery clause

<as subquery clause> ::= [<left paren> <colunmnm nane list> <right paren>] AS
<tabl e subquery> { WTH NO DATA | W TH DATA }

An<as subquery cl ause> used in table definition creates atable based on a <t abl e subquer y>. This
kind of table definitionis similar to aview definition. It can include new column names to override the column names
specified in the subquery. If W TH DATA is specified, then the new table will contain the rows of data returned by
the<t abl e subquery>.

| OREATE TABLE t (a, b, c) AS (SELECT * FROM atable) WTH DATA |

column definition

A column definition consists of a<col unm nane> and in most cases a<dat a type> or <donai n nane>
as minimum. The other elements of <col urm defi ni ti on> are optional. Each <col uimm nane> in atable
isunique.

<colum definition> ::= <colum name> [<data type or domain nanme> |
[<default clause>| <identity colum specification>| <identity columm sequence
specification> | <generation clause>] [<update clause>] [<columm constraint
definition> ..] [<collate clause>]

<data type or dommin nane> ::= <data type> | <domain nane>

<colum constraint definition> ::= [<constraint name definition>] <colum
constraint> [<constraint characteristics>]

<columm constraint> ::= NOT NULL | <unique specification> | <references
specification> | <check constraint definition>

A <columm constraint definition>isashortcut for a<table constraint definition> A
constraint that is defined in thisway is automatically turned into atable constraint. A nameis automatically generated
for the constraint and assigned to it.

If a<col | at e cl ause> isspecified, then aUNIQUE or PRIMARY KEY constraint or an INDEX on the column
will use the specified collation. Otherwise the default collation for the database is used.

63

HyperS@L Schemas and Database Objects

GENERATED
generated columns
The value of a column can be auto-generated in two ways.

Oneway is specific to columns of integral types (INTEGER, BIGINT, etc.) and associates a sequence generator with
the column. When a new row is inserted into the table, the value of the column is generated as the next available
value in the sequence.

The SQL Standard supports the use of unnamed sequences with the IDENTITY keyword. In addition, HyperSQL
supports the use of a named SEQUENCE object, which must be in the same schema as the table.

<identity col umm specification>::= GENERATED { ALWAYS | BY DEFAULT } AS | DENTI TY
[<left paren> <conmpbn sequence generator options> <right paren>]

<identity columm sequence specification ::= GENERATED BY DEFAULT AS SEQUENCE
<sequence nane>

The<identity col umm specification>or<identity colum sequence specification>can
be specified for only a single column of the table.

The<i dentity columm specificati on>isusedfor columns which represent values based on an unnamed
seguence generator. It is possible to insert arow into the table without specifying avalue for the column. Thevalueis
then generated by the sequence generators according to its rules. An identity column may or may not be the primary
key. Example below:

CREATE TABLE t1 (id | NTEGER GENERATED ALWAYS AS | DENTI TY(START W TH 100), name VARCHAR(20)
PRI MARY KEY)

CREATE TABLE t2 (id | NTEGER GENERATED BY DEFAULT AS | DENTI TY(START W TH 1) PRI MARY KEY, nane
VARCHAR(20))

The<i dentity col um sequence speci fi cati on>isused when the column valuesare based on anamed
SEQUENCE object (which must already exist). Example below:

| CREATE TABLE t3 (id I|NTEGER GENERATED BY DEFAULT AS SEQUENCE seq, name VARCHAR(20) PRI MARY KEY) |

Inserting rows is done in the same way for a named or unnamed sequence generator. In both cases, if no value is
specified to be inserted, or the DEFAULT keyword is used for the column, the value is generated by the sequence
generator. If a value is specified, this value is used if the column definition has the BY DEFAULT specification.
If the column definition has the ALWAY S specification, a value can be specified but the OVERRIDING SY STEM
VALUES must be specified in the INSERT statement. In the example below, the OVERRIDING clause is required
because a user valueis provided.

| INSERT INTO t1 (id, nane) OVERRI DING SYSTEM VALUE VALUES (14, 'Test Val ue') |

The dternative form of the OVERRIDING clause is OVERRIDING USER VALUES. Thisisnot used much asit is
always possible to avoid it. When this option is specified, the database engine ignores the value provided by user and
inserts the generated sequence value instead.

The other way in which the column value is auto-generated is by using the values of other columnsin the same row.
This method is often used to create an index on avalue that is derived from other column values.

<generation clause> ::= GENERATED ALWAYS AS <generati on expressi on>

<generation expression> ::= <left paren> <val ue expressi on> <right paren>

64

HyperS@L Schemas and Database Objects

The<gener ati on cl ause> isused for special columns which represent values based on the values held in other
columnsin the same row. The <val ue expr essi on> must reference only other, non-generated, columns of the
table in the same row. Any function used in the expression must be deterministic and must not access SQL-data. No
<query expression>isalowed. When<gener ati on cl ause>isused, <dat a t ype> must be specified.

A generated column can be part of aforeign key or unique constraints or a column of an index. This capability isthe
main reason for using generated columns. A generated column may contain a formula that computes a value based
on the values of other columns. Fast searches of the computed value can be performed when an index is declared on
the generated column. Or the computed values can be declared to be unique, using a UNIQUE constraint on the table.
The computed column cannot be overridden by user supplied values. When arow is updated and the column values
change, the generated columns are computed with the new values.

When arow isinserted into atable, or an existing row is updated, no value except DEFAULT can be specified for a
generated column. In the example below, datais inserted into the non-generated columns and the generated column
will contain 'Felix the Cat' or 'Pink Panther'.

CREATE TABLE t (id | NTEGER PRI MARY KEY,
firstnane VARCHAR(20),
| ast name VARCHAR(20) ,
ful | name VARCHAR(40) GENERATED ALWAYS AS (firstname || ' ' || l|astnanme))
INSERT INTOt (id, firstnane, |astname) VALUES (1, 'Felix', '"the Cat')
INSERT INTOt (id, firstnane, |astnanme, fullnane) VALUES (2, 'Pink', 'Panther', DEFAULT)

DEFAULT
default clause

A default clause can be used if GENERATED is not specified. If acolumn hasa<def ault cl ause>thenitis
possible to insert arow into the table without specifying a value for the column.

<default clause> ::= DEFAULT <default option>

<default option>::=<literal>| <datetinme value function>| USER| CURRENT_USER
| CURRENT _ROLE | SESSI ON USER | SYSTEM USER | CURRENT_CATALOG | CURRENT_SCHEMA
| CURRENT_PATH | NULL

Thetype of the<def aul t opt i on> must match the type of the column.

In PGS (PostgreSQL) compatibility mode, aNEXTVAL function can be used. Also, in MSS compatibility mode, the
default value can be enclosed in parentheses.

ON UPDATE
on update clause

If acolumnhasa<on updat e cl ause> then every timean UPDATE or MERGE statement updates the val ues of
the other columns of the row, the value in this column is updated to the CURRENT_TIMESTAMP. If the UPDATE
statement explicitly updates this column, then the explicit value is used instead of CURRENT TIMESTAMP.

<on update clause> ::= ON UPDATE CURRENT_TI MESTAMP
The type of the column must be TIMESTAMP or TIMESTAMP WITH TIME ZONE.
Thisfeature is not part of the SQL Standard and is similar to MySQL's ON UPDATE clause.

CONSTRAINT

65

HyperS@L Schemas and Database Objects

constraint name and characteristics
<constraint nane definition> ::= CONSTRAI NT <constrai nt nane>

<constraint characteristics> ::= <constraint check tinme> [[NOTI | DEFERRABLE
[<constraint check time>]]

<constraint check time> ::= INTIALLY DEFERRED | | N Tl ALLY | MVEDI ATE

Specify the name of a constraint and its characteristics. By default, the constraint is NOT DEFERRABLE and
I NI TI ALLY | MVEDI ATE. This means the constraint is enforced as soon as a data change statement is executed. If
I NI TI ALLY DEFERRED is specified, then the constraint is enforced when the session commits. The characteristics
must be compatible. The constraint check time can be changed temporarily for an SQL session. HyperSQL does not
support deferring constraint enforcement. This feature of the SQL Standard has been criticised because it alows a
session to read uncommitted data that violates database integrity constraints but has not yet been checked.

CONSTRAINT
table constraint definition

<table constraint definition> ::= [<constraint name definition>] <table
constraint> [<constraint characteristics>]

<tabl e constraint> ::= <uni que constraint definition>| <referential constraint
definition> | <check constraint definition>

Three kinds of constraint can be defined on a table: UNIQUE (including PRIMARY KEY), FOREIGN KEY and
CHECK. Each kind has its own rules to limit the values that can be specified for different columns in each row of
the table.

UNIQUE
unique constraint definition

<uni que constraint definition> ::= <unique specification> <left paren> <uni que
colum list> <right paren> | UN QUE (VALUE)

<uni que specification> ::= UNIQUE | PRI MARY KEY
<uni que colum Ilist> ::= <colum nane |ist>

A unique constraint is specified on a single column or on multiple columns. On each set of columns taken together,
only one UNIQUE constraint can be specified. Each column of a PRIMARY KEY constraint has an implicit NOT
NULL constraint.

If UNI QUE(VALUE) isspecified, the constraint created on all columns of the table.
FOREIGN KEY
referential constraint definition

<referential constraint definition> ::= FOREIGN KEY <l eft paren> <referencing
col ums> <right paren> <references specification>

<references specification>::= REFERENCES <referenced tabl e and col ums> [MATCH
<match type>] [<referential triggered action>]

<match type> ::= FULL | PARTIAL | SIMPLE

66

HyperS@L Schemas and Database Objects

<referencing colums> ::= <reference columm |ist>

<referenced tabl e and col ums> ::= <table name> [<left paren> <reference col um
list> <right paren>]

<reference colum list> ::= <colum nane |ist>

<referential triggered action> ::= <update rule> [<delete rule>] | <delete
rule> [<update rule>]

<update rule> ::= ON UPDATE <referential action>
<del ete rule> ::= ON DELETE <referential action>
<referential action> ::= CASCADE | SET NULL | SET DEFAULT | RESTRICT | NO ACTION

A referential constraint allows links to be established between the rows of two tables. The specified list of
<referenci ng col unms> corresponds one by one to the columns of the specified list of <r ef er enced
col ums> in another table (or sometimes in the same table). For each row in the table, a row must exist in the
referenced table with equivalent values in the two column lists. There must exist a single unique constraint in the
referenced table on all the<r ef er enced col ums>.

The[MATCH match type] clauseis optional and has an effect only on multi-column foreign keys and
only on rows containing at least aNULL in one of the <r ef er enci ng col utms>. If the clause is not specified,
MATCH SIMPLE isthe default. If MATCH SI MPLE is specified, then any NULL means the row can exist (without
a corresponding row in the referenced table). If MATCH FULL is specified then either al the column values must be
NULL or none of them. MATCH PARTI AL alows any NULL but the non NULL values must match those of arow
in the referenced table. HyperSQL does not support MATCH PARTI AL.

Referential actions are specified with ON UPDATE and ON DELETE clauses. These actions take place when arow
in the referenced table (the parent table) has referencing rows in the referencing table and it is deleted or modified
with any SQL statement. The default is NO ACTION. This means the SQL statement that causes the DELETE or
UPDATE is terminated with an exception. The RESTRICT option is similar and works exactly the same without
deferrable constraints (which are not allowed by HyperSQL). The other three options, CASCADE, SET NULL and
SET DEFAULT all allow the DELETE or UPDATE statement to complete. With DELETE statementsthe CASCADE
option results in the referencing rows to be deleted. With UPDATE statements, the changes to the values of the
referenced columns are copied to the referencing rows. With both DELETE or UPDATE statement, the SET NULL
option results in the columns of the referencing rowsto be set to NULL. Similarly, the SET DEFAULT option results
in the columns of the referencing rows to be set to their default values.

CHECK
check constraint definition

<check constraint definition> ::= CHECK <l eft paren> <search condition> <right
par en>

A CHECK constraint can exist for aTABLE or foraDOMAIN. The<sear ch condi ti on> evaluatesto an SQL
BOOLEAN value for each row of the table. Within the <sear ch condi ti on> al columns of the table row can
be referenced. For all rows of the table, the <sear ch condi t i on> evaluatesto TRUE or UNKNOWN. When a
new row is inserted, or an existing row is updated, the <sear ch condi ti on> isevaluated and if it is FALSE,
the insert or update fails.

A CHECK constraint foraDOMAIN issimilar. Inits<sear ch condi ti on>,thetermVALUE isusedto represents
the value to which the DOMAIN applies.

| CREATE TABLE t (a VARCHAR(20) CHECK (a IS NOT NULL AND CHARACTER LENGTH(a) > 2)) |

67

HyperS@L Schemas and Database Objects

The search condition of a CHECK constraint cannot contain any function that is not deterministic. A check
constraint is a data integrity constraint; therefore it must hold with respect to the rest of the data in the database.
It cannot use values that are tempora or ephemeral. For example, CURRENT _USER is a function that returns
different values depending on who is using the database, or CURRENT _DATE changes day-to-day. Some temporal
expressions are retrospectively deterministic and are allowed in check constraints. For example, (CHECK VALUE <
CURRENT_DATE) isvalid, because CURRENT_DATE will not move backwards in time, but (CHECK VALUE >
CURRENT_DATE) is not acceptable.

If you want to enforce the condition that a date value that isinserted into the database belongs to the future (at the time
of insertion), or any similar constraint, then use a TRIGGER with the desired condition.

DROP TABLE
drop table statement

<drop table statenment> ::= DROP TABLE [IF EXISTS] <table name> [|IF EXI STS]
<dr op behavi or >

Destroy atable. The default drop behaviour is RESTRICT and will cause the statement to fail if there is any view,
routine or foreign key constraint that referencesthetable. If <dr op behavi or > is CASCADE, it causes all schema
objects that reference the table to drop. Referencing views are dropped. In the case of foreign key constraints that
reference the table, the constraint is dropped, rather than the TABLE that containsiit.

Temporal System-Versioned Tables and SYSTEM_TIME
Period

System-versioned tables are tables that contain a SY STEM_TIME period consisting of pair of columns defined as
auto-generated TIMESTAMP WITH TIME ZONE, together with the SY STEM VERSIONING clause.

The basic component isthe SYSTEM_TIME period. For each row currently in the table, the start timestamp column,
designated asROW START, containsthe UTC timestamp of the transaction of the INSERT or UPDATE statement that
last modified the row. The end timestamp column, designated as ROW END, contains atimestamp in the distant future
(end of epoch) that indicates the expiration date of the row. HyperSQL uses DATE '10000-01-01' as the expiration
timestamp. A table can have the SY STEM_TIME period without system versioning.

When WITH SYSTEM VERSIONING is used in table definition, any DELETE or UPDATE is performed as usual.
But the deleted rows, and the old versions of the updated rows, are kept in the table with the expiration timestamp
changed to the UTC CURRENT_TIMESTAMP at the start of the transaction that containsthe UPDATE or DELETE.
For example, arow that is updated twice has two old versions kept in the table as well as the current version.

Thehistory rows cannot be modified. Any DELETE or UPDATE statement only seesthe current version of each row of
the table and modifies them. SELECT statements al so see the current version of the rows, unless the table referencein
the SELECT statementisfollowed by FOR SYSTEM Tl ME AS OF <t i mest anp>or FOR SYSTEM Tl ME FROM
<start timestanp> TO <end ti nestanp>or FOR SYSTEM Tl ME BETVEEN <start tinestanp>
AND <end ti nestanp>.

In a CREATE TABLE statement, the two period columns must be defined as follows:

<period begin colum nanme> <tinestanp data type> GENERATED ALVWAYS AS ROW START
<period end col um nanme> <tinestanp data type> GENERATED ALWAYS AS ROW END
The<t abl e period defi niti on> referencesthe period column, in aformat similar to a UNIQUE constraint.

<tabl e period definition> ::= PER OD FOR SYSTEM Tl ME <l eft paren> <period begin
col um nane> <comma> <period end col um nane> <ri ght paren>

68

HyperS@L Schemas and Database Objects

The timestamp type actually used by the system is always TIMESTAMP(6) WITH TIME ZONE, regardless of the
type specified by the user.

An existing table can be converted to asystem-versioned table. Two statement executionsare needed. First, the ALTER
TABLE statement to create the SYSTEM_TIME period and its columns must be executed, followed by the ALTER
TABLE statement to add SYSTEM VERSIONING.

Conversely, system versioning can be removed from atable. The system period can be dropped after dropping system
versioning.

It is not allowed to change the structure of a system-versioned table by adding or removing columns.

Seethe ALTER TABLE statements in this chapter.

Table Settings

Table settings statements change the attributes of tables. These attributes are specific to HyperSQL and are not part
of the SQL Standard.

SET TABLE CLUSTERED
set table clustered property

<set table clustered statenent> ::= SET TABLE <table nane> CLUSTERED ON <l eft
paren> <col umm nane |ist> <right paren>

Set the row clustering property of atable. The <column name list> isalist of column names that must correspond to
the columns of an existing PRIMARY KEY, UNIQUE or FOREIGN KEY index, or to the columns of a user defined
index. This statement is only valid for CACHED or TEXT tables.

Tables rows are stored in the database files as they are created, sometimes at the end of the file, sometimes in the
middle of the file. After a CHECKPOINT DEFRAG or SHUTDOWN COMPACT, the rows are reordered according
to the primary key of the table, or if thereisno primary key, in no particular order.

When several consecutive rows of atable are retrieved during query execution it is more efficient to retrieve rows that
are stored adjacent to one another. After executing this command, nothing changes until a CHECKPOINT DEFRAG
or SHUTDOWN COMPACT or SHUTDOWN SCRIPT is performed. After these operations, the rows are stored in
the specified clustered order. The property is stored in the database and applies to all future reordering of rows. Note
that if extensiveinserts or updates are performed on the tables, the rowswill get out of order until the next reordering.

SET TABLE TYPE

set table type

<set table type statenent> ::= SET TABLE <table nane> TYPE { MEMORY | CACHED }
Changes the storage type of an existing table between CACHED and MEMORY types.

Only a user with the DBA role can execute this statement.

SET TABLE writability

set table write property

<set table read only statement> ::= SET TABLE <table nane> { READ ONLY | READ
WRI TE }

69

HyperS@L Schemas and Database Objects

Set the writability property of atable. Tables are writable by default. This statement can be used to change the property
between READ ONLY and READ WRI TE. Thisisafeature of HyperSQL.

SET TABLE SOURCE

set table sour ce statement

<set tabl e source statement> ::= SET TABLE <t abl e nane> SOURCE <fil e and opti ons>
[DESC]
<file and options>::= <doubl equote> <file path> [<sem colon> <property>...]

<doubl equot e>

Set the text source for atext table. This statement cannot be used for tables that are not defined as TEXT TABLE.

Supported Properties

quoted ={ true | false} default istrue. If false, treats double quotes as normal characters
all_quoted ={ true | false} default isfalse. If true, adds double quotes around all fields.
encoding = <encoding name> character encoding for text and character fields, for example, encoding=UTF-8.

UTF-16 or other encodings can also be used.

ignore_first ={ true | false} default isfalse. If trueignoresthefirst line of the file

cache_rows= <numeric value> rows of the text file in the cache. Default is 1000 rows

cache_size = <numeric value>r total size of the row in the cache. Default is 100 KB.

cache_scale= <numeric value> deprecated properties, replaced by cached_rows and cache size properties
and cache_size scale = <numeric above.

value>

fs = <unquoted character> field separator

Vs = <unquoted character> varchar separator

gc = <unguoted character> quote character

Special indicatorsfor Hyper SQL Text Table separators
\semi semicolon

\quote quote

\space space character

\apos apostrophe

\n newline - Used as an end anchor (like $ in regular expressions)
\r carriage return

\t tab

\\ backslash

70

HyperS@L Schemas and Database Objects

\ut#ttt aUnicode character specified in hexadecimal

In the example below, the text source of the table is set to "myfile", the field separator to the pipe symbol, and the
varchar separator to the tilde symbol.

‘ SET TABLE nytabl e SOURCE 'nyfile;fs=|;vs=.;vs=~

Only auser with the DBA role can execute this statement.
SET TABLE SOURCE HEADER
set table source header statement

<set table source header statenent> ::= SET TABLE <table nanme> SOURCE HEADER
<header string>

Set the header for the text source for atext table. If this command is used, the <header st ri ng> isused asthe
first line of the source file of the text table. Thislineis not part of the table data. Only a user with the DBA role can
execute this statement.

SET TABLE SOURCE on-off
set table source on-off statement
<set tabl e source on-of f statenment> ::= SET TABLE <t abl e nane> SOURCE { ON| OFF }

Attach or detach atext table from its text source. This command does not change the properties or the name of thefile
that is the source of atext table. When OFF is specified, the command detaches the table from its source and closes
the file for the source. In this state, it is not possible to read or write to the table. This allows the user to replace the
file with a different file, or delete it. When ON is specified, the source file is read. Only a user with the DBA role
can execute this statement.

Table Manipulation

Table manipulation statements modify the objects such as columns and constraints. Some of these statements are
defined by the SQL Standard. Others are HyperSQL extensions.

ALTER TABLE
alter table statement
<alter table statement> ::= ALTER TABLE <t abl e nane> <alter table action>

<alter table action> ::= <add columm definition> | <alter columm definition>
| <drop colum definition> | <add table constraint definition> | <drop table
constraint definition> | <add table period definition> | <drop table period
definition> | <add system versioning clause> | <drop system versioning clause>

Change the definition of atable. Specific types of this statement are covered below.
ADD COLUMN
add column definition

<add colum definition> ::= ADD[COLUW] [IF NOT EXISTS] <columm definition>
[BEFORE <ot her col um nane>]

71

HyperS@L Schemas and Database Objects

Add acolumnto an existing table. The<col unm defi ni ti on> isspecified thesameway asitisusedin<t abl e
defini ti on>. HyperSQL alowstheuseof [BEFORE <ot her col utmm name>] to specify at which position
the new column is added to the table.

If the table contains rows, the new column must have a <default cl ause> or use one of the forms of
GENERATED. The column values for each row is then filled with the result of the <def aul t cl ause> or the
generated vaue.

DROP COLUMN
drop column definition
<drop columm definition> ::= DROP [COLUW] <col um nane> <drop behavi or>

Destroy a column of a base table. The <dr op behavi or > is either RESTRI CT or CASCADE. If the column is
referenced in atable constraint that references other columns as well as this column, or if the column is referenced
in a VIEW, or the column is referenced in a TRIGGER, then the statement will fail if RESTRI CT is specified. If
CASCADE is specified, then any CONSTRAINT, VIEW or TRIGGER object that references the column is dropped
with a cascading effect.

ADD CONSTRAINT
add table constraint definition
<add table constraint definition> ::= ADD <table constraint definition>

Add aconstraint to atable. The existing rows of the table must conform to the added constraint, otherwisethe statement
will not succeed.

DROP CONSTRAINT
drop table constraint definition

<drop table constraint definition> ::= DROP CONSTRAI NT <constrai nt nane> <drop
behavi or >

Destroy a constraint on a table. The <dr op behavi or > has an effect only on UNIQUE and PRIMARY KEY
constraints. If such a constraint is referenced by a FOREIGN KEY constraint, the FOREIGN KEY constraint will be
dropped if CASCADE is specified. If the columns of such a constraint are used in a GROUP BY clause in the query
expression of aVIEW or another kind of schemaobject, and afunctional dependency relationship exists between these
columns and the other columnsin that query expression, then the VIEW or other schema object will be dropped when
CASCADE is specified.

ADD SYSTEM PERIOD
add system period definition

<add tabl e systemperiod definition>::= ADD PERI OD FOR SYSTEM Tl ME <l eft paren>
<period begin colum nane> <comma> <period end col unm nanme> <right paren> ADD
COLUWN <period begin colum nanme> <tinestanp data type> GENERATED ALWAYS AS
ROW START ADD COLUWN <period end colum nanme> <tinmestanp data type> GENERATED
ALWAYS AS ROW END

Add the system period definition and columnsto atable. Thelong statement must be entered in full. The existing rows
of the table are marked as created at the current timestamp with end-of-epoch expiration timestamp.

ALTER TABLE t ADD PERI OD FOR SYSTEM TI ME(rs, re) ADD COLUWN rs TI MESTAMP GENERATED ALWAYS AS ROW
START ADD COLUWN re Tl MESTAMP GENERATED ALWAYS AS ROW END

72

HyperS@L Schemas and Database Objects

DROP SYSTEM PERIOD
drop system period definition

<drop table system period definition> ::= DROP PERIOD FOR SYSTEM TI ME <drop
behavi or >

Drop the system period definition and columns of a table. The <drop behavi or > is either RESTRI CT or
CASCADE. If the system period or its columns have been referenced in other database object such as VIEW or
ROUTINE, then the statement will fail if RESTRI CT is specified. If CASCADE is specified, then any such VIEW or
other database object that references the period or its columns is dropped with a cascading effect

ADD SYSTEM VERSIONING
add system versioning clause
<add system versioning clause> ::= ADD SYSTEM VERSI ONl NG

Add system versioning to atable that already has a SY STEM_TIME period definition and columns.

‘ ALTER TABLE t ADD SYSTEM VERSI ONI NG

DROP SYSTEM VERSIONING
drop system versioning clause
<drop table system period definition> ::= DROP SYSTEM VERSI ONl NG

Drop system versioning of atable. The<dr op behavi or > iseither RESTRI CT or CASCADE. If system versioning
has been referenced in other database object such as VIEW or ROUTINE, then the statement will fail if RESTRI CT
is specified. If CASCADE is specified, then any such VIEW or other database object that references system versioning
is dropped with a cascading effect A references to system versioning consists of the FOR SYSTEM_TIME clause in
a SELECT statement. With the successful execution of this statement, all the history rows in the table are deleted and
only the current versions of rows survive. The period for SYSTEM_TIME, and its columns, survive after dropping
versioning.

ALTER COLUMN
alter column definition

<alter colum definition> ::= ALTER [COLUW] <columm nane> <alter colum
action>

<alter colum action> ::= <set colum default clause> | <drop columm default
clause>| <alter colum data type clause>| <alter identity columm specification>
| <alter colum nullability> | <alter colum name> | <add colum identity
specification> | <drop colum identity specification>

Change a column and its definition. Specific types of this statement are covered below. See also the RENAME
statement above.

SET DEFAULT
set column default clause

<set columm default clause> ::= SET <default cl ause>

73

HyperS@L Schemas and Database Objects

Set the default clause for a column. This can be used if the column is not defined as GENERATED.
DROP DEFAULT

drop column default clause

<drop colum default clause> ::= DROP DEFAULT

Drop the default clause from a column.

SET DATA TYPE

alter column data type clause

<alter colum data type clause> ::= SET DATA TYPE <data type>

Change the declared type of a column. The latest SQL Standard alows only changes to type properties such as
maximum length, precision, or scale, and only changes that cause the property to enlarge. HyperSQL allows changing
the typeif all the existing values can be cast into the new type without string truncation or loss of significant digits.

alter column add identity generator or sequence

alter column add identity generator or sequence

<add colum identity generator> ::= <identity colum specification>

<add col um sequence generator> ::= <identity colum sequence specification>

Adds an identity specification or a sequence to the column. The type of the column must be an integral type and the
existing values must not include nulls. This option is specific to HyperSQL

‘ ALTER TABLE nytable ALTER COLUWN i d GENERATED ALWAYS AS | DENTI TY (START W TH 20000)

‘ ALTER TABLE nytable ALTER COLUWN i d GENERATED BY DEFAULT AS SEQUENCE seq

alter column identity generator
alter identity column specification
<alter identity colum specification> ::= <alter identity colum option>...

<alter identity colum option> ::= <alter sequence generator restart option> |
SET <basi c sequence generator option>

Changethe propertiesof an identity column. Thiscommand issimilar to the commands used for changing the properties
of named SEQUENCE aobjects discussed earlier and can use the same options.

ALTER TABLE nytable ALTER COLUWN id RESTART W TH 1000
ALTER TABLE nytable ALTER COLUWN id SET | NCREMENT BY 5

DROP GENERATED
drop column identity generator
<drop colum identity specification> ::= DROP GENERATED

Removes the identity generator from a column. After executing this statement, the column values are no longer
generated automatically. This option is specific to HyperSQL

74

HyperS@L Schemas and Database Objects

‘ ALTER TABLE nytable ALTER COLUWN i d DROP GENERATED ‘

SET [NOT] NULL
alter column nullability
<alter colum nullability> ::= SET [NOT] NULL

Adds or removesaNOT NULL constraint from a column. This option is specific to HyperSQL

View Creation and Manipulation

CREATE VIEW

view definition

<view definition> ::= CREATE VIEW [|IF NOT EXISTS] <table nanme> <view
speci fication> AS <query expression> [WTH][CASCADED | LOCAL] CHECK OPTI ON]
<view specification> ::= [<left paren> <view colum list> <right paren>]
<view columm list> ::= <colum nane |ist>

Define aview. The <query expressi on>isaSELECT or similar statement. The <vi ew colum |ist>
is the list of unigue names for the columns of the view. The number of columnsin the <vi ew col um |ist>
must match the number of columns returned by the <query expressi on>. If <vi ew col um | i st>isnot
specified, then the columns of the <query expr essi on> should have unique names and are used as the names
of the view column.

Some views are updatable. As covered elsewhere, an updatable view is based on a single table or updatable view.
For updatable views, the optional CHECK OPTI ON clause can be specified. If this option is specified, then if arow
of the view is updated or a new row isinserted into the view, then it should contain such values that the row would
be included in the view after the change. If W TH CASCADED CHECK OPTI ONis specified, then if the <query
expr essi on> of the view references another view, then the search condition of the underlying view should also be
satisfied by the update or insert operation.

DROP VIEW
drop view statement

<drop view statement> ::= DROP VIEW][IF EXISTS] <table name> [|IF EXI STS]
<dr op behavi or>

Destroy aview. The<dr op behavi or > issimilar to dropping atable.
ALTER VIEW
alter view statement

<alter view statenent> ::= ALTER VIEW <table name> <view specification> AS
<query expression> [WTH [CASCADED | LOCAL] CHECK OPTION]

Alter aview. The statement is otherwise identical to CREATE VIEW. The new definition replaces the old. If there
are database objects such as routines or views that reference the view, then these objects are recompiled with the new
view definition. If the new definition is not compatible, the statement fails.

75

HyperS@L Schemas and Database Objects

Domain Creation and Manipulation

CREATE DOMAIN

domain definition

<donmin definition> ::= CREATE DOVAIN <domain nanme> [AS] <predefined type>
[<default clause>] [<domain constraint> ..] [<collate clause>]
<domai n constraint> ::= [<constraint nane definition>] <check constraint

definition> [<constraint characteristics>]

Define adomain. Although a DOMAIN is not strictly atypein the SQL Standard, it can be informally considered as
atype. A DOMAIN isbased on a<pr edef i ned type>, which isabase type defined by the Standard. It can have
a<defaul t cl ause>, similar to acolumn default clause. It can also have one or more CHECK constraints which
[imit the values that can be assigned to a column that has the DOMAIN asits type. The keyword VALUE isused in
the constraint definition to refer to the value of the column.

If a column uses a domain that contains a <def aul t cl ause>, it can have a column default clause as well,
which overrides the default defined by the domain. In atable that contains a column based on a domain, the CHECK
constraints in table definition apply in addition to the CHECK constraints of the domain.

CREATE DOMAI N val i d_string AS VARCHAR(20) DEFAULT ' NO VALUE CHECK (VALUE IS NOT NULL AND
CHARACTER_LENGTH(VALUE) > 2)

ALTER DOMAIN

alter domain statement

<alter domain statenment> ::= ALTER DOVAI N <domai n nanme> <alter dommin action>
<alter donain action> ::= <set domain default clause> | <drop donmmin default
clause> | <add domain constraint definition> | <drop domain constraint

definition>

Change adomain and its definition.

SET DEFAULT

set domain default clause

<set domain default clause> ::= SET <default cl ause>

Set the default value in adomain. Thisisallowed if the domain is already used in atable definition.
DROP DEFAULT

drop domain default clause

<drop dommi n default clause> ::= DROP DEFAULT

Remove the default clause of adomain. Thisisallowed if the domain is already used in atable definition. If acolumn
uses the domain as its type, the domain default is removed. If there is no existing column default clause, the default
clause of the domain becomes the column default clause.

ADD CONSTRAINT

76

HyperS@L Schemas and Database Objects

add domain constraint definition
<add dommi n constraint definition> ::= ADD <donmmi n constrai nt>

Add a constraint to a domain. This is allowed if the domain is already used in a table definition and the table data
satisfies the constraint.

DROP CONSTRAINT
drop domain constraint definition
<drop dommi n constraint definition> ::= DROP CONSTRAI NT <constraint nane>

Remove a constraint on a domain. Thisis allowed if the domain is already used in atable definition. The constraint
no longer appliesto a column that uses the domain as itstype.

DROP DOMAIN
drop domain statement
<drop donmmi n statenent> ::= DROP DOVAI N <donmai n name> <drop behavi or >

Destroy adomain. If <dr op behavi or > is not CASCADE, an exception israised if the domain is already used in
any database object. When CASCADE is specified, it works differently from most other cascading operations. If atable
features a column that has specified DOMAIN, the column survives and inherits the base data type of the domain.
The default clause and the check constraint of the DOMAIN no longer apply to the column (this behaviour is different
from the SQL Standard).

Trigger Creation

CREATE TRIGGER
trigger definition

<trigger definition> ::= CREATE TRI GGER <trigger nanme> <trigger action tine>
<trigger event> ON <table nane> [REFERENCI NG <transition table or variable
list>] <triggered action>

<trigger action time> ::= BEFORE | AFTER | | NSTEAD OF

<trigger event> ::= INSERT | DELETE | UPDATE [OF <trigger colum list>]
<trigger colum list> ::= <colum name |ist>

<triggered action> ::= [FOR EACH { ROW | STATEMENT }] [<triggered when
clause>] <triggered SQ statenent>

<triggered when clause> ::= WHEN <l eft paren> <search condition> <right paren>
<triggered SQL statenment> ::= <SQL procedure statement> | BEA N ATOM C { <SQL
procedure statenent> <semicolon> }... END | [QUEUE <integer literal>] [NOMIT]
CALL <HSQLDB trigger class FQ\W

<transition table or variable list> ::= <transition table or variable>. ..
<transition table or variable> ::= OLD[ROWN] [AS] <old transition variable

name> | NEW|[ROWN] [AS] <new transition variable nane> | OLD TABLE [AS]
<old transition table name> | NEWTABLE [AS] <new transition table nanme>

77

HyperS@L Schemas and Database Objects

<old transition table nanme> ::= <transition table nane>
<new transition table nanme> ::= <transition table nane>
<transition table nane> ::= <identifier>

<old transition variable nanme> ::= <correl ati on name>
<new transition variable name> ::= <correl ati on nane>

Trigger definition is a relatively complex statement. The combination of <tri gger action tinme> and
<trigger event > determinesthe type of the trigger. Examples include BEFORE DELETE, AFTER UPDATE,
INSTEAD OF INSERT. If theoptional [OF <tri gger columm |ist>] isspecifiedfor an UPDATE trigger,
then the trigger is activated only if one of the columnsthat isinthe <t ri gger colum | i st > is specifiedin
the UPDATE statement that activates the trigger.

If atrigger is FOR EACH ROW which is the default option, then the trigger is activated for each row of the table
that is affected by the execution of an SQL statement. Otherwise, it is activated once only per statement execution. In
the first case, there is a before and after state for each row. For UPDATE triggers, both before and after states exist,
representing the row before the update, and after the update. For DELETE, triggers, there is only a before state. For
INSERT triggers, thereisonly an after state. If atrigger isFOR EACH STATEMENT, then atransient tableis created
containing all the rows for the before state and another transient table is created for the after state.

The[REFERENCI NG <transition tabl e or vari abl e>] isusedto giveanameto the before and after
datarow or table. This name can be referenced inthe <SQL pr ocedur e st at enent > to access the data.

Theoptional <t ri gger ed when cl ause> isasearch condition, similar to the search condition of aDELETE or
UPDATE statement. If the search condition is not TRUE for arow, then the trigger is not activated for that row.

The<SQL procedure statenent >islimited to INSERT, DELETE, UPDATE and MERGE statements.

The<HSQLDB trigger class FQ\>isadedimited identifier that contains the fully qualified name of a Java
classthat implementstheor g. hsql db. Tri gger interface.

HyperSQL do not yet allow the use of OLD TABLE or NEW TABLE in statement level trigger definitions.
DROP TRIGGER

drop trigger statement

<drop trigger statenent> ::= DROP TRI GGER <trigger name>

Destroy atrigger.

Routine Creation

schema routine

L-invoked routine

<SQ@.-i nvoked routine> ::= <schema routine>

<schema routine> ::= <schema procedure> | <schema function>
<schema procedure> ::= CREATE <SQL-i nvoked procedure>
<schema function> ::= CREATE <SQ.-i nvoked functi on>

78

HyperS@L Schemas and Database Objects

<SQ.-i nvoked procedure> ::= PROCEDURE <schema qualified routine nane> <SQ
paranmeter declaration list> <routine characteristics> <routine body>

<SQ.-i nvoked function> ::= { <function specification> | <nethod specification
desi gnator> } <routine body>

<SQ. paranmeter declaration list> ::= <left paren> [<SQ paraneter declaration>
[{ <comma> <SQL paraneter declaration>}...]] <right paren>
<SQ. paraneter declaration> ::=[<paraneter node>] [<SQ paraneter nane>]

<paraneter type> [RESULT]

<parameter nmode> ::= IN| OUT | | NOUT

<parameter type> ::= <data type>

<function specification> ::= FUNCTION <schema qualified routine nane>
<SQ. paraneter declaration list> <returns clause> <routine characteristics>
[<dispatch clause>]

<nmet hod specification designator> ::= SPECIFIC METHOD <specific nethod nane>
| [INSTANCE | STATIC | CONSTRUCTOR] METHOD <nethod nanme> <SQL paraneter
declaration list> [<returns clause>] FOR <schema-resol ved user-defined type
nane>

<routine characteristics> ::=[<routine characteristic>...]

<routine characteristic> ::= <language clause> | <paraneter style clause> |
SPECI FI C <specific name> | <deterministic characteristic> | <SQ.-data access
indication> | <null-call clause> | <returned result sets characteristic> |

<savepoi nt |evel indication>
<savepoi nt level indication> ::= NEWSAVEPO NT LEVEL | OLD SAVEPO NT LEVEL

<returned result sets characteristic> ::= DYNAM C RESULT SETS <nmmxi mum r et ur ned
result sets>

<parameter style clause> ::= PARAMETER STYLE <paraneter style>

<di spatch cl ause> ::= STATI C DI SPATCH

<returns clause> ::= RETURNS <returns type>

<returns type> ::= <returns data type> [<result cast>] | <returns table type>
<returns table type> ::= TABLE <table function colum I[ist>

<table function colum list> ::= <left paren> <table function colum Ii st
elenent> [{ <comma> <table function colum list element> }...] <right paren>

<table function columm list element> ::= <columm nane> <data type>
<result cast> ::= CAST FROM <result cast fromtype>
<result cast fromtype> ::= <data type> [<locator indication>]

<returns data type> ::= <data type> [<l ocator indication>]

79

HyperS@L Schemas and Database Objects

<routine body> ::= <SQ routine spec> | <external body reference>
<SQ@. routine spec> ::=[<rights clause>] <SQ routine body>
<rights clause> ::= SQL SECURITY | NVOKER | SQ. SECURI TY DEFI NER
<SQ@. routine body> ::= <SQ. procedure statenent>

<external body reference> ::= EXTERNAL [NAME <external routine name>]
[<paraneter style clause>]

<parameter style> ::= SQ | GENERAL

<determ nistic characteristic> ::= DETERM N STIC | NOT DETERM NI STI C
<SQL-data access indication> ::= NO SQL | CONTAINS SQL | READS SQ. DATA |
MODI FI ES SQL DATA

<null-call clause> ::= RETURNS NULL ON NULL | NPUT | CALLED ON NULL | NPUT

<maxi mum returned result sets> ::= <unsigned integer>

Define an SQL-invoked routine. A few of the options are not used by HyperSQL and have default behaviours. Seethe
SQL-Invoked Routines chapter for more details of various options and examples.

ALTER routine
alter routine statement

<alter routine statement> ::= ALTER <specific routine designator> [<alter
routi ne characteristics>] [RESTRICT] <routine body>

<alter routine characteristics> ::= <alter routine characteristic>...

<alter routine characteristic> ::= <language cl ause> | <paraneter style clause>
| <SQ.-data access indication> | <null-call clause> | <returned result sets
characteristic>

<alter routine body> ::= <SQ. routine body>

Alter the characteristic and the body of an SQL-invoked routine. If RESTRICT is specified and the routine is already
used in adifferent routine or view definition, an exception is raised. Altering the routine changes the implementation
without changing the parameters. Defining recursive SQL/PSM SQL functions is only possible by atering a non-
recursive routine body. An example is given in the SQL-Invoked Routines chapter.

An exampleis given below for afunction defined as a Java method, then redefined as an SQL function.

CREATE FUNCTI ON zero_pad(x BIGA NT, digits INT, maxsize |NT)
RETURNS CHAR VARYI NG(100)
SPECI FI C zero_pad_01
NO SQ. DETERM NI STI C
LANGUAGE JAVA
EXTERNAL NAME ' CLASSPATH: org. hsql db.lib. StringUtil.toZeroPaddedString';

ALTER SPECI FI C ROUTI NE zero_pad_01
LANGUAGE SQL

BEG N ATOM C

DECLARE str VARCHAR(128):

SET str = CAST(x AS VARCHAR(128));

80

HyperS@L Schemas and Database Objects
SET str = SUBSTRI NG(' 0000000000000 FROM 1 FOR digits - CHAR LENGTH(str)) + str;
return str;
END

DROP

drop routine statement

<drop routine statenent>

;.= DROP <specific routine designator> <drop behavi or>

Destroy an SQL-invoked routine.

Sequence Creation

CREATE SEQUENCE

seguence generator definition

<sequence
gener at or

gener at or

<sequence gener at or

<sequence gener at or

definition> ::= CREATE SEQUENCE [| F NOT EXI STS] <sequence

name> [<sequence generator options>]

options> ::= <sequence generator option> ..

option> ::= <sequence generator data type option> | <comon

sequence generator options>

<conmon sequence generator options> ::=

<commbn sequence gener at or

<conmmon sequence generator option> ..

option> ::= <sequence generator start with option>

| <basic sequence generator option>

<basi ¢ sequence generator option> ::=
| <sequence generator

<sequence generator increnent
nmaxval ue option> | <sequence generator

by option>
m nval ue option>

| <sequence generator cycle option>

<sequence gener at or

<sequence gener at or
val ue>

<sequence gener at or

<sequence generat or
i ncremrent >

<sequence gener at or

<sequence gener at or
| NO MAXVALUE

<sequence gener at or

<sequence gener at or
| NO M NVALUE

<sequence gener at or

data type option> ::= AS <data type>

start with option> ::= START W TH <sequence generator start

start value> ::= <signed nuneric literal >

i ncrenent by option> ::= I NCREMENT BY <sequence generator

increnent> ::= <signed nuneric literal >

maxval ue option> :: = MAXVALUE <sequence gener at or max val ue>

max val ue> ::= <signed nuneric literal >

m nval ue option> ::= M NVALUE <sequence generator m n val ue>

mn value> ::= <signed nuneric literal >

81

HyperS@L Schemas and Database Objects

<sequence generator cycle option> ::= CYCLE | NO CYCLE

Define anamed sequence generator. A SEQUENCE abject generates a sequence of integers according to the specified
rules. The simple definition without the options defines a sequence of numbers in INTEGER type starting at 1 and
incrementing by 1. By default, the CYCLE property is set and the minimum and maximum limits are the minimum
and maximum limits of the type of returned values. There are self-explanatory options for changing various properties
of the sequence. The MAXVALUE and M NVAL UE specify the upper and lower limits. If CYCLE is specified, after the
seguence returns the highest or lowest value in range, the next value will respectively be the lowest or highest valuein
range. If NO CYCLE is specified, the use of the sequence generator resultsin an error once the limit has been reached.

The integer types: SMALLINT, INTEGER, BIGINT, DECIMAL and NUMERIC can be used as the type of the
segquence. DECIMAL and NUMERIC types must have ascale of 0 and a precision not exceeding 18.

ALTER SEQUENCE
alter sequence generator statement

<alter sequence generator statenment> ::= ALTER SEQUENCE <sequence generator
name> <alter sequence generator options>

<al ter sequence generator options> ::= <alter sequence generator option>...

<al ter sequence generator option> ::= <alter sequence generator restart option>
| <basic sequence generator option>

<al ter sequence generator restart option> ::= RESTART [W TH <sequence gener at or
restart val ue>]

<sequence generator restart value> ::= <signed nuneric literal >

Change the definition of a named sequence generator. The same options that are used in the definition of the
SEQUENCE can be used to alter it. The exception is the option for the start value which is RESTART W TH for the
ALTER SEQUENCE statement.

If RESTART is used by itself (without a value), then the current value of the sequence is reset to the start value.
Otherwise, the current value is reset to the given restart value.

DROP SEQUENCE
drop sequence generator statement

<drop sequence generator statement> ::= DROP SEQUENCE [|IF EXISTS] <sequence
generator nane> [|F EXISTS | <drop behavior>

Destroy an external sequence generator. If the <dr op behavi or > is CASCADE, then all objects that reference the
seguence are dropped. These abjects can be VIEW, ROUTINE or TRIGGER objects.

SQL Procedure Statement

SQL procedure statement
L procedure statement

The definition of CREATE TRIGGER and CREATE PROCEDURE statements refers to <SQ. pr ocedure
st at emrent >. The definition of this element is given below. However, only a subset of these statementsis allowed
in trigger or routine definition.

82

HyperS@L Schemas and Database Objects

<SQ. procedure statenent> ::= <SQL executabl e statenent>
<SQ. executable statenent> ::= <SQ schenma statement> | <SQ. data statenent>
| <SQ control statenment> | <SQ. transaction statement> | <SQL connection

statenment > | <SQ. session statenent>| <SQ di agnostics statenent> | <SQ. dynam c
st at enent >

<SQ. schenmm statenent> ::= <SQ. schena definition statenent> | <SQ. schema
mani pul ati on stat enent >

<SQ. schema definition statement> ::= <schema definition>| <table definition> |
<viewdefinition>| <SQ-invoked routine>| <grant statement>| <rol e definition>
| <domain definition> | <character set definition> | <collation definition> |
<transliteration definition> | <assertion definition> | <trigger definition> |
<user-defined type definition>| <user-defined cast definition>| <user-defined
ordering definition>| <transformdefinition>| <sequence generator definition>

<SQ. schenma nani pul ati on statenent> ::= <drop schena statenment> | <alter table
statement> | <drop table statenent> | <drop view statement> | <alter routine
statement> | <drop routine statenent> | <drop user-defined cast statenent> |
<revoke statenent> | <drop role statenent> | <alter domain statenent> | <drop
domai n statenment> | <drop character set statenent> | <drop collation statenent>
| <drop transliteration statement> | <drop assertion statenent> | <drop trigger
statement> | <alter type statenent> | <drop data type statenment> | <alter
sequence generator statenment> | <drop sequence generator statenent>

Other Schema Object Creation

CREATE SYNONYM
create synonym statement

<create synonym st atement > :: = CREATE SYNONYM <synonym name> FOR <t ar get obj ect
name>

Creates a synonym for the <t ar get obj ect nane>. The synonym is defined in the current schema, unless the
nameis qualified with a different schemaname. The target object name can be a schema object in the current schema
or in another schema. The synonym can be used only without the schema name.

DROP SYNONYM
drop synonym statement
<drop synonym statenment> ::= DROP SYNONYM <synonym nane>

Drops the synonym. The <synonym namne> can be the simple name of the synonym or qualified with the schema
name.

CREATE INDEX
create index statement

<create index statenent> ::= CREATE INDEX [|IF NOT EXISTS] <index nane> ON
<t abl e name> <l eft paren> {<colum nanme> [ASC | DESC]}, ... <right paren>

Creates an index on a group of columns of atable. The optional [ASC | DESC] specifiesif the column isindexed in
the ascending or descending order, but has no effect on how the index is created (it is allowed for compatibility with

83

HyperS@L Schemas and Database Objects

other database engines). HyperSQL can use all indexes in ascending or descending order as needed. Indexes should
not duplicate the columns of PRIMARY KEY, UNIQUE or FOREIGN key constraints as each of these constraints
creates an index automatically.

DROP INDEX

drop index statement

<drop index statenent> ::= DROP INDEX [IF EXISTS] <index name> [|F EXI STS]
Destroy an index.

ALTER INDEX

change the columns of an index

<alter index statenment> ::= ALTER INDEX <index nane> <left paren> {<colum
nane>} , ... <right paren>

Redefine anindex with anew column list. This statement is more efficient than dropping an existing index and creating
anew one.

CREATE TYPE
user-defined type definition
<user-defined type definition> ::= CREATE TYPE <user-defined type body>

<user-defined type body> ::= <schema-resolved user-defined type name> [AS
<representation>]

<representation> ::= <predefined type>

Define a user-defined type. Currently only simple distinct types can be defined without further attributes.
CREATE CAST

user-defined cast definition

<user-defined cast definition> ::= CREATE CAST <l eft paren> <source data type>
AS <target data type> <right paren> WTH <cast function> [AS ASSI GNVENT]

<cast function> ::= <specific routine designator>

<source data type> ::= <data type>

<target data type> ::= <data type>

Define a user-defined cast. This feature may be supported in afuture version of HyperSQL.
DROP CAST

drop user-defined cast statement

<drop user-defined cast statenent> ::= DROP CAST <l eft paren> <source data type>
AS <target data type> <right paren> <drop behavi or>

Destroy a user-defined cast. This feature may be supported in a future version of HyperSQL.

84

HyperS@L Schemas and Database Objects

CREATE CHARACTER SET
character set definition

<character set definition> ::= CREATE CHARACTER SET <character set nane> [AS]
<character set source> [<collate clause>]

<character set source> ::= GET <character set specification>

Define a character set. A new CHARACTER SET is based on an existing CHARACTER SET. The optional
<col | at e cl ause> specifiesthe collation to be used, otherwisethe collation isinherited from the default collation
for the source CHARACTER SET. Currently this statement has no effect, as the character set used by HyperSQL is
Unicode and there is no need for subset character sets.

DROP CHARACTER SET
drop character set statement
<drop character set statenment> ::= DROP CHARACTER SET <character set nanme>

Destroy a character set. If the character set name is referenced in any database object, the command fails. Note that
CASCADE or RESTRI CT cannot be specified for this command.

CREATE COLLATION
collation definition

<col l ation definition> ::= CREATE COLLATI ON <col | ati on nane> FOR <char act er set
speci fication> FROM <exi sting collation nane> [<pad characteristic>]

<existing collation nane> ::= <collation nane>
<pad characteristic> ::= NO PAD | PAD SPACE

Define a collation. A new collation is based on an existing COLLATION and applies to an existing CHARACTER
SET.The<char act er set specification>isawaysSQL_TEXT.The<exi sting col |l ati on nane>
iseither SQL_TEXT or one of the language collations supported by HyperSQL. The <pad characteri stic>
specifies whether strings are padded with spaces for comparison.

This statement is typically used when a collation is required that does not pad spaces before comparing two strings.
For example, CREATE COLLATI ON FRENCH_NOPAD FOR | NFORMATI ON_SCHEMA. SQL_TEXT FROM
"French" NO PAD, results in a French collation without padding. This collation can be used for sorting or for
individual columns of tables.

DROP COLLATION
drop collation statement
<drop collation statenment> ::= DROP COLLATION <col | ati on nane> <drop behavi or >

Destroy acollation. If the<dr op behavi or > is CASCADE, then all references to the collation revert to the default
collation that would bein force if the dropped collation was not specified.

CREATE TRANSLATION

trandliteration definition

85

HyperS@L Schemas and Database Objects

<transliteration definition> ::= CREATE TRANSLATION <transliterati on name> FOR
<source character set specification> TO <target character set specification>
FROM <transliteration source>

<source character set specification> ::= <character set specification>

<target character set specification> ::= <character set specification>

<transliteration source> ::= <existing transliteration name> | <transliteration
routine>

<existing transliteration nane> ::= <transliteration nane>

<transliteration routine> ::= <specific routine designator>

Define acharacter tranditeration. This feature may be supported in afuture version of HyperSQL.

DROP TRANSLATION

drop trandliteration statement

<drop transliteration statenent> ::= DROP TRANSLATION <transliteration name>
Destroy a character tranditeration. This feature may be supported in afuture version of HyperSQL.

CREATE ASSERTION

assertion definition

<assertion definition>::= CREATE ASSERTI ON <constrai nt name> CHECK <| eft paren>
<search condition> <right paren> [<constraint characteristics>]

Specify an integrity constraint. This feature may be supported in a future version of HyperSQL.
DROP ASSERTION
drop assertion statement

<drop assertion statement> ::= DROP ASSERTION <constraint name> [<drop
behavi or>]

Destroy an assertion. This feature may be supported in a future version of HyperSQL.

The Information Schema

The Information Schema is a specia schemain each catalog. The SQL Standard defines a number of character sets
and domainsin this schema. In addition, all the implementation-defined collations belong to the Information Schema.

The SQL Standard defines many views in the Information Schema. These views show the properties of the database
objects that currently exist in the database. When a user accesses one these views, only the properties of database
objects that the user can access are included.

HyperSQL supportsall the views defined by the Standard, apart from afew viewsthat report on extended user-defined
types and other optional features of the Standard that are not supported by HyperSQL .

HyperSQL also adds some views to the Information Schema. These views are for features that are not reported in any
of the views defined by the Standard, or for use by JDBC DatabaseM etaData.

86

HyperS@L Schemas and Database Objects

References to Database Objects

Each database object may reference other database objects. For example, a VIEW references tables in its SELECT
statement. An SQL FUNCTION or PROCEDURE typically references tables, views, other routines, and sequences.
There are views in the INFORMATION_SCHEMA with the word "USAGE" in the name. Each of these views lists
references to objects of a particular type from a particular type, for example references to tables from routines.

Fromversion 2.5.0, anew SQL statement lists all the database objectsthat use (reference) a particular database object.
Alternatively, the statement lists all the database object that are used (referenced) by a particular database object.

EXPLAIN REFERENCES
explain references

<expl ain references statement> ::= EXPLAIN REFERENCES { TO | FROM } { TABLE |
VIEW| DOVAIN | TYPE | SPACIFI C ROUTI NE | SEQUENCE > <obj ect nane>

For example, EXPLAI N REFERENCES TO TABLE T1.

Predefined Character Sets, Collations and Domains

The SQL Standard defines a number of character sets and domains in the INFORMATION SCHEMA.
These domains are used in the INFORMATION SCHEMA views:
CARDINAL_NUMBER, YES OR_NO, CHARACTER_DATA, SQL_IDENTIFIER, TIME_STAMP

All available collations are in the INFORMATION SCHEMA.

Views in INFORMATION SCHEMA

HyperSQL supports a vast range of views in the INFORMATION_SCHEMA. These include views specified
by the SQL Standard, SQL/Schemata part, plus views that are specific to HyperSQL and are used for JDBC
DatabaseM etaData queries, which are based on SQL/CLI part, or other information that is not covered by the SQL
Standard. The names of views that are not part of SQL/Schemata start with SYSTEM _.

The views cover different types of information. These are covered in the next sections.

Visibility of Information

Users with the special ADMIN role can see the full information on all database objects. Ordinary, non-admin users
can see information on the objects for which they have some privileges.

Therowsreturned to anon-admin user exclude objects on which the user hasno privilege. The extent of theinformation
in visible rows varies with the user's privilege. For example, the owner of aVIEW can see the text of the view query,
but a user of the view cannot see this text. When a user cannot see the contents of some column, null is returned for
that column.

Name Information

The names of database objects are stored in hierarchica views. The top level view is
INFORMATION_SCHEMA_CATALOG_NAME.

Below thislevel, there is a group of views that covers authorizations and roles, without referencing schema objects.
These are AUTHORIZATIONS and ADMINSTRABLE_ROLE_AUTHORIZATIONS.

87

HyperS@L Schemas and Database Objects

Also below the top level, there isthe SCHEMATA view, which lists the schemas in the catal og.

The views that refer to top-level schema objects are divided by object type. These includes
ASSERTIONS, CHARACTER_SETS, COLLATIONS, DOMAINS, ROUTINES, SEQUENCES, TABLES,
USER_DEFINED_TYPES and VIEWS.

There are views that refer to objects that are dependent on the top-level schema objects. These include COLUMNS
and PARAMETERS, viewsfor constraints, including CHECK_CONSTRAINTS, REFERENTIAL_CONSTRAINTS
and TABLE_CONSTRAINTS, and finally the TRIGGERS view.

The usage of each type of top-level object by another is covered by severa views. For example,
TRIGGER_SEQUENCE_USAGE or ROUTINE_TABLE_USAGE.

Severa other views list the individua privileges owned or granted to each AUTHORIZATION. For example,
ROLE_ROUTINE_GRANTSor TABLE_PRIVILEGES.

Data Type Information

The INFORMATION_SCHEMA contains comprehensive information on the data types of each schema object and
its elements. For example, the ROUTINES view includes the return data type for each FUNCTION definition. The
columns for thisinformation contain nulls for rows that cover PROCEDURE definitions.

The COLUMNS, PARAMETERS and SEQUENCES views contain the type information in columns with similar
names.

Thetypeinformation for ARRAY typesisreturned inthe ELEMENT_TYPES view. When arow of the COLUMNS
or other view indicates that the type of the objectisan ARRAY type, then thereisacorresponding entry for thisrow in
the ELEMENT_TYPES view. The following columns in the ELEMENTS TY PES view identify the database object
whose datatypeisbeing described: OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE,
COLLECTION_TYPE_IDENTIFIER. The last column's counterpart in the COLUMNS view is named differently as
DTD_IDENTIFIER. Soin order to determinethe array element type of acolumn, an equi-join betweenthe COLUMNS
and ELEMENT _TYPES tables on the six listed columns in the ELEMENT_TY PES view and their counterpartsin
the COLUMNS view is needed.

Product Information

A group of views, including SQL_IMPLEMENTATION_INFO, SQL_FEATURES, SQL_SIZING and others cover
the capabilities of HyperSQL in detail. These views hold static data and can be explored even when the database is
empty.

Operations Information

There are some HyperSQL custom views cover the current state of operation of the database. These include
SYSTEM_CACHEINFO, SYSTEM_SESSIONINFO and SYSTEM_SESSIONS views.

SQL Standard Views

Thefollowing views are defined by the SQL Standard and supported by HyperSQL . The columns and contents exactly
match the Standard requirements.

ADMINISTRABLE_ROLE_AUTHORIZATIONS
Information on ROL E authorizations, all granted by the admin role.

APPLICABLE_ROLES

88

HyperS@L Schemas and Database Objects

Information on ROLE authorizations for the current user

ASSERTIONS

Empty view as ASSERTION aobjects are not yet supported.

AUTHORIZATIONS

Top level information on USER and ROL E objects in the database

CHARACTER_SETS

List of supported CHARACTER SET objects

CHECK_CONSTRAINTS

Additional information specific to each CHECK constraint, including the search condition
CHECK_CONSTRAINT_ROUTINE_USAGE

Information on FUNCTION aobjects referenced in CHECK constraints search conditions
COLLATIONS

Information on collations supported by the database.

COLUMNS

Information on COLUMN objectsin TABLE and VIEW definitions
COLUMN_COLUMN_USAGE

Information on referencesto COLUMN objects from other, GENERATED, COLUMN objects
COLUMN_DOMAIN_USAGE

Information on DOMAIN objects used in type definition of COLUMN objects
COLUMN_PRIVILEGES

Information on privileges on each COLUMN abject, granted to different ROLE and USER authorizations
COLUMN_UDT_USAGE

Information on distinct TY PE objects used in type definition of COLUMN objects
CONSTRAINT_COLUMN_USAGE

Information on COLUMN objects referenced by CONSTRAINT aobjectsin the database
CONSTRAINT_PERIOD_USAGE

Information on application PERIOD objects referenced by CONSTRAINT objects in the database
CONSTRAINT_TABLE _USAGE

Information on TABLE and VIEW objects referenced by CONSTRAINT objects in the database

DATA_TYPE_PRIVILEGES

89

HyperS@L Schemas and Database Objects

Information on top level schema objects of various kinds that reference TY PE objects
DOMAINS

Top level information on DOMAIN objects in the database.
DOMAIN_CONSTRAINTS

Information on CONSTRAINT definitions used for DOMAIN objects
ELEMENT_TYPES

Information on the type of elements of ARRAY used in database columns or routine parameters and return values
ENABLED_ROLES

Information on ROLE privileges enabled for the current session
INFORMATION_SCHEMA_CATALOG_NAME

Information on the single CATALOG object of the database
KEY_COLUMN_USAGE

Information on COLUMN objects of tables that are used by PRIMARY KEY, UNIQUE and FOREIGN KEY
constraints

KEY_PERIOD_USAGE

Information on application PERIOD objects that are used by PRIMARY KEY, UNIQUE and FOREIGN KEY
constraints

PARAMETERS

Information on parameters of each FUNCTION or PROCEDURE
PERIODS

Information on PERIOD objects defined in tables
REFERENTIAL_CONSTRAINTS

Additional information on FOREIGN KEY constraints, including triggered action and name of UNIQUE constraint
they refer to

ROLE_AUTHORIZATION_DESCRIPTORS

ROLE_COLUMN_GRANTS

Information on privileges on COLUMN objects granted to or by the current session roles
ROLE_ROUTINE_GRANTS

Information on privileges on FUNCTION and PROCEDURE objects granted to or by the current session roles
ROLE_TABLE_GRANTS

Information on privileges on TABLE and VIEW objects granted to or by the current session roles

90

HyperS@L Schemas and Database Objects

ROLE_UDT_GRANTS

Information on privileges on TY PE objects granted to or by the current session roles
ROLE_USAGE_GRANTS

Information on privileges on USAGE privileges granted to or by the current session roles
ROUTINE_COLUMN_USAGE

Information on COLUMN objects of different tablesthat are referenced in FUNCTION and PROCEDURE definitions
ROUTINE_JAR_USAGE

Information on JAR usage by Java language FUNCTION and PROCEDURE objects.
ROUTINE_PERIOD_USAGE

Information on table PERIOD objects referenced in FUNCTION and PROCEDURE objects.
ROUTINE_PRIVILEGES

Information on EXECUTE privileges granted on PROCEDURE and FUNCTION objects
ROUTINE_ROUTINE_USAGE

Information on PROCEDURE and FUNCTION objects that are referenced in FUNCTION and PROCEDURE
definitions

ROUTINE_SEQUENCE_USAGE

Information on SEQUENCE objects that are referenced in FUNCTION and PROCEDURE definitions
ROUTINE_TABLE_USAGE

Information on TABLE and VIEW objects that are referenced in FUNCTION and PROCEDURE definitions
ROUTINES

Top level information on al PROCEDURE and FUNCTION objects in the database

SCHEMATA

Information on all the SCHEMA objects in the database

SEQUENCES

Information on SEQUENCE objects

SQL_FEATURES

List of all SQL:2011 standard features, including information on whether they are supported or not supported by
HyperSQL

SQL_IMPLEMENTATION_INFO

Information on name, capabilities and defaults of the database engine software.

91

HyperS@L Schemas and Database Objects

SQL_PACKAGES

List of SQL:2011 Standard packages, including information on whether they are supported or not supported by
HyperSQL

SQL_PARTS

List of the SQL:2011 Standard parts, including information on whether they are supported or not supported by
HyperSQL

SQL_SIZING

List of the SQL:2011 Standard maximum supported sizes for different features as supported by HyperSQL
SQL_SIZING_PROFILES

TABLES

Information on all TABLE and VIEW object, including the INFORMATION_SCHEMA views themselves
TABLE_CONSTRAINTS

Information on all table level constraints, including PRIMARY KEY, UNIQUE, FOREIGN KEY and CHECK
constraints

TABLE_PRIVILEGES

Information on privileges on TABLE and VIEW objects owned or given to the current user
TRANSLATIONS

TRIGGERED_UPDATE_COLUMNS

Information on columns that have been used in TRIGGER definitions in the ON UPDATE clause
TRIGGERS

Top level information on the TRIGGER definitionsin the databases
TRIGGER_COLUMN_USAGE

Information on COLUMN objects that have been referenced in the body of TRIGGER definitions
TRIGGER_PERIOD_USAGE

Information on PERIOD objects that have been referenced in the body of TRIGGER definitions
TRIGGER_ROUTINE_USAGE

Information on FUNCTION and PROCEDURE objects that have been used in TRIGGER definitions
TRIGGER_SEQUENCE_USAGE

Information on SEQUENCE objects that been referenced in TRIGGER definitions
TRIGGER_TABLE_USAGE

Information on TABLE and VIEW objects that have been referenced in TRIGGER definitions

92

HyperS@L Schemas and Database Objects

USAGE_PRIVILEGES

Information on USAGE privileges granted to or owned by the current user
USER_DEFINED_TYPES

Top level information on TY PE objects in the database

VIEWS

Top Level information on VIEW objects in the database

VIEW_COLUMN_USAGE

Information on COLUMN objects referenced in the query expressions of the VIEW objects
VIEW_PERIOD_USAGE

Information on PERIOD objects referenced in the query expressions of the VIEW objects
VIEW_ROUTINE_USAGE

Information on FUNCTION and PROCEDURE objects that have been used in the query expressions of the VIEW
objects

VIEW_TABLE_USAGE

Information on TABLE and VIEW objects that have been referenced in the query expressions of the VIEW objects

HyperSQL Custom Views

The following views are specific to HyperSQL. Most of these views are used directly by JDBC DatabaseMetaData
method callsand areindicated as such. Some views contain information that is specific to HyperSQL and isnot covered
by the SQL Standard views.

SYSTEM_BESTROWIDENTIFIER
For DatabaseM etaData.getBestRowl dentifier
SYSTEM_CACHEINFO

Contains the current settings and variables of the data cache used for all CACHED tables, and the data cache of each
TEXT table.

SYSTEM_COLUMN_SEQUENCE_USAGE

Contains arow for each column that is defined as GENERATED BY DEFAULT AS SEQUENCE with the column
name and sequence name

SYSTEM_COLUMNS
For DatabaseM etaData.getColumns, contains a row for each column
SYSTEM_COMMENTS

Contains the user-defined comments added to tables and their columns. Also informational comments on
INFORMATION_SCHEMA views

93

HyperS@L Schemas and Database Objects

SYSTEM_CONNECTION_PROPERTIES
For DatabaseM etaData.getClientInfoProperties
SYSTEM_CROSSREFERENCE

Full list of al columns referenced by FOREIGN KEY constraints. For DatabaseM etaData.getCrossReference,
getExportedK eys and getlmportedK eys.

SYSTEM_INDEXINFO

For DatabaseM etaData.getlndexInfo

SYSTEM_KEY_INDEX_USAGE

List of system-generated index names for each PRIMARY KEY, UNIQUE and FOREIGN KEY constraint.
SYSTEM_PRIMARYKEYS

For DatabaseM etaData.getPrimaryK eys
SYSTEM_PROCEDURECOLUMNS

For DatabaseM etaData.getProcedureColumns

SYSTEM_PROCEDURES

For DatabaseM etaData.getFunctionColumns, getFunctions and getProcedures
SYSTEM_PROPERTIES

Contains the current values of all the database level properties. Settings such as SQL rule enforcement, database
transaction model and default transaction level are all reported in this view. The names of the properties are listed in
the Properties chapter together with the corresponding SQL statements used to change the properties.

SYSTEM_SCHEMAS

For DatabaseM etaData.getSchemas

SYSTEM_SEQUENCES

SYSTEM_SESSIONINFO

Information on the settings and properties of the current session.
SYSTEM_SESSIONS

Information on all open sessions in the database (when used by a DBA user), or just the current session. Includes the
current transaction state of each session.

SYSTEM_TABLES
Information on tables and views for DatabaseM etaData.getTables
SYSTEM_TABLESTATS

Information on table spaces and cardinality for each table

94

HyperS@L

Schemas and Database Objects

SYSTEM_TABLETYPES
For DatabaseM etaData.getTableTypes

SYSTEM_TEXTTABLES

Information on the settings of each text table.

SYSTEM_TYPEINFO

For DatabaseM etaData.getTypelnfo
SYSTEM_UDTS

For DatabaseM etaData.getUDTs

SYSTEM_USERS

Containsthe list of al usersin the database (when used by a DBA user), or just the current user.

SYSTEM_VERSIONCOLUMNS

For DatabaseM etaData.getV ersionColumns. Containslist of columns of system PERIOD and thosewith ON UPDATE

CURRENT TIMESTAMP.

95

HyperS@L

Chapter 5. Text Tables
Text Tables as a Standard Feature of HSQLDB

Bob Preston, The HSQL Development Group
Fred Toussi, The HSQL Development Group

$Revision: 6098 $

Copyright 2002-2020 Bob Preston and Fred Toussi. Permission is granted to distribute this document
without any alteration under the terms of the HSQLDB license. Additional permission is granted to the HSQL
Development Group to distribute this document with or without alterations under the terms of the HSQLDB
license.

2020-06-29

Overview

Text Table support for HSQLDB was originaly developed by Bob Preston independently from the Project.
Subsequently Bob joined the Project and incorporated this feature into version 1.7.0, with anumber of enhancements,
especialy the use of SQL commands for specifying the files used for Text Tables.

Inanutshell, Text Tablesare CSV or other delimited filestreated as SQL tables. Any ordinary CSV or other delimited
filecan beused. Thefull range of SQL queriescan beperformed onthesefiles, including SELECT, INSERT, UPDATE
and DELETE. Indexes and unique constraints can be set up, and foreign key constraints can be used to enforce
referential integrity between Text Tables themselves or with conventional tables.

The delimited file can be created by the engine, or an existing file can be used.

HyperSQL with Text Table support is the only comprehensive solution that employs the power of SQL and the
universal reach of JDBC to handle data stored in text files.

The Implementation

Definition of Tables

Text Tables are defined similarly to conventional tables with the added TEXT keyword.

‘ CREATE TEXT TABLE <t abl enanme> (<col umm definition> [<constraint definition>]) ‘

Thetableis at first empty and cannot be written to. An additional SET command specifies the file and the separator
character that the Text table uses. It assignsthefile to the table.

‘ SET TABLE <t abl enane> SOURCE <quot ed_fi |l enane_and_opti ons> [DESC] ‘

Scope and Reassignment

» A Text table without afile assigned to it isREAD ONLY and EMPTY .
» Reassigning a Text Table definition to a new file has implicationsin the following areas:

1. Theuser isrequired to be an administrator.

96

Hypers L Text Tables

2. Existing transactions are committed at this point.

3. Congtraints, including foreign keys referencing this table, are kept intact but not checked. It is the responsibility
of the administrator to ensure their integrity.

The new source file is scanned and indexes are built when it is assigned to the table. At this point any violation of
NOT NULL, UNIQUE or PRIMARY KEY constraints are caught and the assignment is aborted. However, foreign
key constraints are not checked at the time of assignment or reassignment of the sourcefile.

Null Values in Columns of Text Tables

» Empty fields are treated as NULL. These are fields where there is nothing or just spaces between the separators.

* Quoted empty strings are treated as empty strings.

Configuration

Thedefault field separator isacommay(,). A different field separator can be specified withinthe SET TABLE SOURCE

statement. For example, to change the field separator for the table mytable to a vertical bar, place the following in the
SET TABLE SOURCE statement, for example:

\ SET TABLE nytabl e SOURCE "nyfile;fs=|" ‘

Since HSQL DB treats CHAR and VARCHAR strings the same, the ability to assign a different separator to the latter
is provided. When a different separator is assigned to aVARCHAR, it will terminate any CSV field of that type. For
example, if the first field is CHAR, and the second field VARCHAR, and the separator f s has been defined as the
pipe () and vs asthe period (.) then the datain the CSV file for arow will look like:

\ First field datal Second field data. Third field data \

This facility in effect offers an extra, special separator which can be used in addition to the global separator. The
following example shows how to change the default separator to the pipe (|), VARCHAR separator to the period (.)
within aSET TABLE SOURCE statement:

| SET TABLE nytabl e SOURCE "nyfile;fs=|;vs=." |

HSQL DB also recognises the following special indicators for separators:

special indicatorsfor separators
\semi semicolon

\quote single-quote

\space space character

\apos apostrophe

\colon colon character

\n newline - Used as an end anchor (like $ in regular expressions)
\r carriage return

\t tab

\ backslash

97

Hypers L Text Tables

\ut#ttt aUnicode character specified in hexadecimal

Furthermore, HSQL DB provides csv file support with three additional boolean options: i gnore_fi rst, quot ed
andal | _quot ed. Thei gnore_first option (default false) tells HSQLDB to ignore the first line in afile. This
option is used when the first line of the file contains column headings or other title information. Thefirst line consists
of the characters before the first end-of-line symbol (line feed, carriage return, etc). It is simply set aside and not
processed. The al | _quot ed option (default false) tells the program that it should use quotes around all character
fieldswhen writing to the sourcefile. Thequot ed option (default true) uses quotes only when necessary to distinguish
afield that containsthe separator character. It can be set to false to prevent the use of quoting altogether and treat quote
characters as normal characters. All these options may be specified within the SET TABLE SOURCE statement:

‘ SET TABLE nytabl e SOURCE "nyfile;ignore_first=true;all_quoted=true" ‘

When the default options al | _quot ed= f al se and quot ed=t r ue arein force, fields that are written to aline
of the csv file will be quoted only if they contain the separator or the quote character. The quote character inside the
field is doubled when written out to the file. When al | _quot ed=f al se and quot ed=f al se the quote character
is not doubled. With this option, it is not possible to insert any string containing the separator into the table, as it
would becomeimpossibleto distinguish from aseparator. While reading an existing data sourcefile, the program treats
each individual field separately. It determines that a field is quoted only if the first character is the quote character.
It interprets the rest of the field on this basis.

The setting, nul | _def, can be used to simplify importing text files containing empty fields. These fields
are interpreted as null but the user may want an empty string or another default value instead of null. With
nul | _def =t r ue defined in the text source string, and a table column that is defined as DEFAULT <val > NOT
NULL with a constant value for the default, the default value will be used instead of any empty or NULL field.

The character encoding for the source fileis ASCI | by default, which corresponds to the 8-bit ANSI character
set. To support UNICODE or source files prepared with different encodings this can be changed to UTF- 8 or
any other encoding. The default is encodi ng=ASCl | and the option encodi ng=UTF- 8 or other supported
encodings can be used. From version 2.3.4, the two-byte-per-character encodings of UTF-16 are also supported. The
encodi ng=UTF- 16BE isbig-endian, whileencodi ng=UTF- 16LE islittle-endian. Theencodi ng=UTF- 16 is
big-endian by default. This encoding reads a special Unicode character called BOM if it is present at the beginning of
an existing file and if this character indicates little-endian, the file is treated as such. Note HSQLDB does not write
aBOM character to thefilesit creates from scratch.

Finally, HSQL DB provides the ahility to read atext fileas READ ONLY, by placing the keyword "DESC" at the end
of the SET TABLE SOURCE statement:

\ SET TABLE nytabl e SOURCE "nyfile" DESC \

Text table sourcefiles are cached in memory. The maximum number of rows of datathat arein memory at any timeis
controlled by thecache_r ows property. The default valuefor cache_r ows is 1000 and can be changed by setting
the default database property. The cache_si ze property sets the maximum amount of memory used for each text
table. The default is 100 KB. The properties can be set for individual text tables. These properties do not control the
maximum size of each text table, which can be much larger. An exampleis given below:

SET TABLE nyt abl e SOURCE
"nyfile;ignore_first=true;all_quoted=true; cache_rows=10000; cache_si ze=1000"

The properties wused in ealier versions, namely the textdb.cache_scale and the
t ext db. cache_si ze_scal e can till be used for backward compatibility, but the new properties are preferred.

Supported Properties

quoted ={ true | false } default istrue. If false, treats double quotes as normal characters

98

Hypers L Text Tables

all_quoted = { true|false} default isfalse. If true, adds double quotes around all fields.

encoding = <encoding name> character encoding for text and character fields, for example, encoding=UTF-8.
UTF-16, UTF-16BE, UTF-16LE can also be used.

ignore first ={ true|false} default isfalse. If trueignoresthe first line of thefile

null_def = { true | false} default is false. If true, replaces any null or empty fields in the text file rows
with the column default value of the not-null column

cache_rows= <numeric value> rows of thetext file in the cache. Default is 1000 rows

cache_size = <numeric value>r total size of the rows in the cache. Default is 100 KB.

cache _scale= <numeric value> deprecated properties, replaced by cached_rows and cache size properties
and cache size scale = <numeric above.

value>

fs = <unquoted character> field separator

Vs = <unquoted character> varchar separator

gc = <unquoted character> quote character

Disconnecting Text Tables

Text tables may be disconnected from their underlying data source, i.e. the text file.

Y ou can explicitly disconnect atext table from its file by issuing the following statement:

| SET TABLE nytabl e SOURCE OFF |

Subsequently, myt abl e will be empty and read-only. However, the data source description will be preserved, and
the table can be re-connected to it with

| SET TABLE nytabl e SOURCE ON |

When a database is opened, if the source file for an existing text table is missing, the table remains disconnected from
its data source but the source description is preserved. This alows the missing source file to be added to the directory
and the table re-connected to it with the above command.

Disconnecting text tables from their source has several uses. While disconnected, the text source can be edited outside
HSQLDB, provided data integrity is respected. When large text sources are used, and several constraints or indexes
need to be created on the table, it is possible to disconnect the source during the creation of constraints and indexes
and reduce the time it takes to perform the operation.

Text File Usage
The following information applies to the usage of text tables.

Text Filelssues

» With file databases, text file locations are restricted to below the directory that contains the database, unless the
textdb. al | ow_ful | _pat h property isset trueasaJavasystem property. Thisfeatureisfor security, otherwise
an admin database user may be able to open random files. The specified text source path is interpreted differently
according to this property. By default, the path isinterpreted as arel ative path to the directory path of databasefiles,

99

Hypers L Text Tables

it therefore cannot contain the double dot notation for parent directory. This path is then appended by the engine
to the directory path to form afull path.

When the property istrue, and the path starts with the forward slash or back slash, or the path contains a semicolon,
the path is not appended to the directory path and is used asit isto open the file. In this usage the path is absolute.

By default, all-in-memory databases cannot use text tables. To enable this capability the
textdb. al | ow _ful | _pat h property must be set t r ue as a Java system property. The text file path is used
as submitted and interpreted as an absolute path as described above, or a path relative to the Java process execute
path. These text tables are always read-only.

Databases store in jars or as files on the classpath and opened with the res: protocol can reference read-only text
files. These files are opened as resources. Thefile path is an absolute path beginning with aforward slash.

Blank lines are allowed anywhere in the text file, and are ignored.
It is possible to define a primary key, identity column, unique, foreign key and check constraints for text tables.

When atable sourcefileis used with the i gnore_first=true option, thefirst, ignored lineis replaced with
ablank line after a SHUTDOWN COMPACT, unless the SOURCE HEADER statement has been used.

An existing table sourcefile may include CHARACTER fields that do not begin with the quote character but contain
instances of the quote character. These fields are read as literal strings. Alternatively, if any field begins with the
quote character, then it isinterpreted as a quoted string that should end with the quote character and any instances
of the quote character within the string is doubled. When any field containing the quote character or the separator is
written out to the source file by the program, the field is enclosed in quote character and any instance of the quote
character inside the field is doubled.

Inserts or updates of CHARACTER type field values are allowed with strings that contains the linefeed or the
carriage return character. This feature is disabled when both quoted and all_quoted properties are false.

ALTER TABLE commandsthat add or drop columns or constraints (apart from check constraints) are not supported
with text tables that are connected to asource. First usethe SET TABLE <name> SOURCE OFF, make the changes,
then turn the source ON.

Use the default setting (quoted=true) for selective quoting of fields. Those fields that need quoting are quoted, other
not.

Usethe quoted=fal se setting to avoid quoting of fieldscompletely. With this setting any quote character isconsidered
part of the text.

Use the all_quoted=true setting to force all fields to be quoted.
Y ou can choose the quote character. The default is the double-quote character.

SHUTDOWN COMPACT resultsin acomplete rewrite of text table sources that are open at the time. The settings
for quoted and all_quoted are applied for the rewrite.

Text File Global Properties

The database engine uses a set of defaultsfor text table properties. Each table's data source may override these defaullts.
It is also possible to override the defaults globally, so they apply to all text tables. The statement SET DATABASE
TEXT TABLE DEFAULTS <properties string> can be used to override the default global properties. An example
is given below:

SET DATABASE TEXT TABLE DEFAULTS
"al | _quot ed=t r ue; encodi ng=UTF- 8; cache_r ows=10000; cache_si ze=2000'

100

Hypers L Text Tables

List of supported global properties
« gc="

o fs=,

AVIES

* quot ed=true

» all _quot ed=f al se

e ignore first=fal se

* nul |l _def=fal se

* encodi ng=ASClI |

e cache_rows=1000

e cache_si ze=100

textdb. all ow full _path=fal se (a system property)

Transactions

Text tablesfully support transactions. New or changed rowsthat have not been committed are not updated in the source
file. Therefore, the source file always contains committed rows.

However, text tables are not as resilient to machine crashes as other types of tables. If the crash happens while the text
sourceis being written to, the text source may contain only some of the changes made during a committed transaction.
With other types of tables, additional mechanisms ensure the integrity of the data and this situation will not arise.

101

HyperS@L

Chapter 6. Access Control

Fred Toussi, The HSQL Development Group
$Revision: 3096 $

Copyright 2010-2020 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.

2020-06-29

Overview

This chapter is about access control to database objects such as tables, inside the database engine. Other issues related
to security include user authentication, password complexity and secure connections are covered in the System
Management chapter and the HyperSQL Network Listeners (Servers) chapter.

Apart from schemas and their object, each HyperSQL catalog has USER and ROLE objects. These objects are
collectively called authorizations. Each AUTHORIZATION has some access rights on some of the schemas or the
objects they contain. The persistent elements of an SQL environment are database objects

Authorizations names are stored in the database in the case-normal form. When connecting to a database via JDBC,
the user name and password must match the case of this case-normal form.

When a user is created with the CREATE USER statement, if the user name is enclosed in double quotes, the exact
name is used as the case-normal form. But if it is not enclosed in double quotes, the name is converted to uppercase
and this uppercase version is stored in the database as the case-normal form.

Authorizations and Access Control

In general, ROLE and USER objects simply control access to schema objects. Thisis the scope of the SQL Standard.
However, there are special roles that allow the creation of USER and ROLE objects and also allow some specid
operations on the database as awhole. These roles are not defined by the Standard, which has Ieft it to implementers
to define such roles as they are needed for the particular SQL implementation.

A ROLE has a name, a collection of zero or more other roles, plus some privileges (access rights). A USER has a
name and a password. It similarly has a collection of zero or more roles plus some privileges.

USER objects existed in the SQL-92, but ROLE objects wereintroduced in SQL:1999. Originally it wasintended that
USER objects would normally be the same as the operating system USER objects and their authentication would be
handled outside the SQL environment. The co-existence of ROLE and USER objects results in complexity. With the
addition of ROLE objects, there is no rationale, other than legacy support, for granting privileges to USER objects
directly. It is better to create roles and grant privileges to them, then grant the roles to USER objects.

The Standard effectively defines a special ROLE, named PUBLIC. All authorizations have the PUBLIC role, which
cannot be removed from them. Therefore, any access right assigned to the PUBLIC role applies to al authorizations
in the database. For many simple databases, it is adequate to create a single, non-admin user, then assign accessrights
to the pre-existing PUBLIC role. Accessto INFORMATION_SCHEMA viewsis granted to PUBLIC; therefore these
views are accessible to all. However, the contents of each view depend on the ROLE or USER (AUTHORIZATION)
that is in force while accessing the view.

Each schema has asingle AUTHORIZATION. This is commonly known as the owner of the schema. All the objects
in the schema inherit the schema owner. The schema owner can add objects to the schema, drop them or alter them.

102

HyperS@L Access Control

By default, the objects in a schema can only be accessed by the schema owner. The schema owner can grant access
rights on the objects to other users or roles.

authorization identifier
authorization identifier
<aut horization identifier> ::= <role name> | <user nane>

Authorization identifiers share the same name-space within the database. The same name cannot be used for a USER
and aROLE.

Built-In Roles and Users

There are some pre-defined roles in each database; some defined by the SQL Standard, some by HyperSQL. These
roles can be assigned to users (directly or viaother, user-defined roles). In addition, thereistheinitial SY Suser created
with each new database. The initial user name and password is defined in the connection properties when the first
connection to the database is made. In older versions of HSQL DB, this name was always SA. But in the latest version,
the name can be defined as a different string.

PUBLIC
the PUBLIC role

Therolethat isassigned to all authorizations (roles and users) in the database. Thisrole has accessrightsto all objects
in the INFORMATION_SCHEMA.. Any roles or rights granted to this role, are in effect granted to all users of the
database.

_SYSTEM
the SYSTEM role

This role is the authorization for the pre-defined (system) objects in the database, including the
INFORMATION_SCHEMA. Thisrole cannot be assigned to any authorization.

DBA
the DBA role (Hyper SQL-specific)

This is a specia role in HyperSQL. A user that has this role can perform all possible administrative tasks on the
database. The DBA role can also act as a proxy for al the roles and users in the database. This means it can do
everything the authorization for a schema can do, including dropping the schema or its objects, or granting rights on
the schema objects to a grantee.

CREATE_SCHEMA
the CREATE_SCHEMA role (Hyper SQL-specific)

An authorization that has this role, can create schemas. The DBA authorization has this role and can grant it to other
authorizations.

CHANGE_AUTHORIZATION
the CHANGE_AUTHORIZATION role (Hyper SQL-specific)

A user that has this role, can change the authorization for the current session to another user. The other user cannot
have the DBA role (otherwise, the original user would gain DBA privileges). The DBA authorization has this role
and can grant it to other authorizations.

103

HyperS@L Access Control

SYSUser
the SYSuser (Hyper SQL-specific)

This user is automatically created with a new database and has the DBA role. This user name and its password are
defined in the connection properties when connecting to the new database to create the database. As this user, it is
possible to change the password, create other users and created new schema objects. The initial SY'S user can be
dropped by another user that has the DBA role. Asaresult, there is always at least one SY S user in the database.

Listing Users and Roles

Tablesin the INFORMATION_SCHEMA contain the list of users and roles for the database.

The SYSTEM_USERS tables contains the list of users, with some extra settings for each user. The
AUTHORIZATIONS table contains alist of both users and roles.

Severa other INFORMATION_SCHEMA tables list the privileges granted to users and roles on different database
objects. Refer to the Schemas and Database Objects chapter for alist and description of the tables. Example below:

SELECT * FROM | NFORMATI ON_SCHEMA. SYSTEM USERS
SELECT * FROM | NFORMATI ON_SCHEMA. TABLE_PRI VI LEGES

Access Rights

By default, the objects in a schema can only be accessed by the schema owner. But the schema owner can grant
privileges (access rights) on the objects to other users or roles.

Things can get far more complex, because the grant of privileges can be made WITH GRANT OPTION. In this case,
the role or user that has been granted the privilege can grant the privilege to other roles and users.

Privileges can also be revoked from users or roles.

The statements for granting and revoking privileges normally specify which privileges are granted or revoked.
However, there is a shortcut, ALL PRIVILEGES, which means all the privileges that the <gr ant or > has on the
schemaobject. The <gr ant or > isnormally the CURRENT_USER of the session that issues the statement.

The user or role that is granted privilegesisreferred to as <gr ant ee> for the granted privileges.
TABLE

For tables, including views, privileges can be granted with different degrees of granularity. It is possible to grant a
privilege on al columns of atable, or on specific columns of the table.

The DELETE privilege appliesto the table, rather than its columns. It appliesto all DELETE statements.

The SELECT, INSERT and UPDATE privileges may apply to al columns or to individual columns. These privileges
determine whether the <gr ant ee> can execute SQL data statements on the table.

The SELECT privilege designates the columns that can be referenced in SELECT statements, as well as the columns
that areread in a DELETE or UPDATE statement, including the search condition.

The INSERT privilege designates the columns into which explicit values can be inserted. To be able to insert a row
into the table, the user must therefore have the INSERT privilege on the table, or at least all the columns that do not
have a default value.

The UPDATE privilege designates the table or the specific columns that can be updated.

104

HyperS@L Access Control

A MERGE statement requires SELECT privileges together with INSERT, UPDATE and DELETE privileges when
these actions are specified in the statement.

The REFERENCES privilege alows the <gr ant ee> to define a FOREIGN KEY constraint on a different table,
which references the table or the specific columns designated for the REFERENCES privilege.

The TRIGGER privilege alows adding atrigger to the table.
SEQUENCE, TYPE, DOMAIN, CHARACTER SET, COLLATION, TRANSLITERATION

For these objects, only USAGE can be granted. The USAGE privilege is needed when object is referenced directly
in an SQL statement.

ROUTINE

For routines, including procedures or functions, only EXECUTE privilege can be granted. This privilege is needed
when the routine is used directly in an SQL statement.

OTHER OBJECTS

Other objects such as constraints and assertions are not used directly and there is no grantable privilege that refers
to them.

Fine-Grained Data Access Control

As mentioned above, a USER or ROLE that does not own a schema can be granted access to individual columns of a
table in the schema. HyperSQL adds a feature that is not part of the SQL Standard to allow this access to be granted
only for certain rows of atable, based on a FILTER condition.

When the GRANT statement contains a FILTER condition, the condition is applied to each row of the table that a
SELECT, INSERT, UPDATE, DEL ETE or MERGE statement triesto access. Only the rowsthat satisfy the condition
are accessed and al other rows are ignored.

The following is an example of this usage. The table INFO has a column that determines the geographic region for
each row of data and another column that holds the expiration date for this row. While the owner of the schema can
access and change the datain all the rows of thistable, each group of ordinary usersisonly allowed to access the data
for a certain region. Some among each group are only allowed to access the rows before the expiration date.

CREATE TABLE info(id INT PRI MARY KEY, info VARCHAR(100), region VARCHAR(32) NOT NULL, expires
DATE NOT NULL)
-- there is also a foreign key constraint on the REG ON colum to reference a list of valid

regi on nanes.

I NSERT INTO i nfo VALUES 2, 'inserted data for EU current', 'European Union', CURRENT_DATE + 1 DAY
INSERT INTO info VALUES 3, 'inserted data for SA current', 'South America', CURRENT_DATE + 1 DAY
I NSERT INTO i nfo VALUES 4, 'inserted data for EU expired', 'European Union', CURRENT_DATE - 1 DAY
CREATE ROLE eu_adnin
CREATE ROLE eu_user
GRANT SELECT FI LTER (WHERE regi on
GRANT SELECT FI LTER (WHERE regi on
eu_user

' Eur opean Union') ON TABLE info TO eu_adm n
' Eur opean Uni on' AND expires > CURRENT_DATE) ON TABLE info TO

In the above example, the EU_ADMIN and EU_USER roles are granted to the usersthat are allowed to accessthe data
for the European Union. These users cannot seetherowsthat arefor other regions. Among them, only theEU_ADMIN
users can see the rows that have expired. The SELECT grant with FILTER also prevents the users from deleting or
updating the rows they cannot access.

The<filter clause> can be used for other forms of fine-grained access control. In the example below, the
COMMON_USER roleis defined and granted access during office hours only.

105

HyperS@L Access Control

CREATE ROLE common_user
GRANT SELECT FI LTER (WHERE EXTRACT(HOUR FROM CURRENT_TI MESTAMP) BETWEEN 9 AND 17) ON TABLE info
TO common_user

Fine-grained data access control can also be used to implement multi-tenancy database solutions.

A separate<fi |l t er cl ause> canbedeclared oneachof SELECT, DELETE, INSERT and UPDATE rightson the
table. To change an existing fine-grained right granted to a ROL E on atable, the existing right must be revoked before
a GRANT with FILTER is made. Use of ALTER TABLE to remove columns that are not referenced in a FILTER
condition, or to add new columns to the table, does not affect the validity of the FILTER condition. But if any column
that is referenced is removed, you need to REVOKE the filtered rights.

With a MERGE statement, which may contain INSERT, UPDATE, and DELETE clauses, the UPDATE filter is used
when selecting the rowsto UPDATE, aswell asrowsto DELETE.

Statements for Authorization and Access Control

The statements listed below allow creation and destruction of USER and ROLE objects. The GRANT and REVOKE
statements allow roles to be assigned to other roles or to users. The same statements are also used in a different form
to assign privileges on schema objects to users and roles.

CREATE USER
user definition (HyperSQL)
<user definition> ::= CREATE USER <user name> PASSWORD <password> [ADM N]

Define a new user and its password. <user nane> isan SQL identifier. If it is double-quoted it is case-sensitive,
otherwiseitisturned to uppercase. <passwor d>isastring enclosed with single quote charactersand is case-sensitive.
If ADM N is specified, the DBA role is granted to the new user. Only a user with the DBA role can execute this
Statement.

DROP USER

drop user statement (HyperSQL)

<drop user statenent> ::= DROP USER <user nane>

Drop (destroy) an existing user. If the specified user is the authorization for a schema, the schemais destroyed.
Only auser with the DBA role can execute this statement.

ALTER USER ... SET PASSWORD

set the password for a user (Hyper SQL)

<alter user set password statenent> ::= ALTER USER <user nane> SET PASSWORD
<passwor d>

Changethe password of an existing user. <user nane>isan SQL identifier. If itisdouble-quoted it is case-sensitive,
otherwiseitisturned to uppercase. <passwor d>isastring enclosed with single quote charactersand is case-sensitive.

Only auser with the DBA role can execute this command.
ALTER USER ... SET INITIAL SCHEMA

set theinitial schema for a user (Hyper SQL)

106

HyperS@L Access Control

<al ter user set initial schema statenent> ::= ALTER USER <user nane> SET | NI TI AL
SCHEMA <schema nanme> | DEFAULT

Changetheinitial schemafor auser. Theinitial schemaisthe schemaused by default for SQL statementsissued during
asession. If DEFAULT is used, the default initial schema for al usersis used as the initial schema for the user. The
SET SCHEMA command allows the user to change the schema for the duration of the session.

Only auser with the DBA role can execute this statement.

ALTER USER ... SET LOCAL

set the user authentication aslocal (HyperSQL)

<alter user set local> ::= ALTER USER <user nane> SET LOCAL { TRUE | FALSE }

Sets the authentication method for the user as local. This statement has an effect only when external authentication
with role names is enabled. In this method of authentication, users created in the database are ignored and an
externa authentication mechanism, such as LDAP is used. This statement is used if you want to use local, password
authentication for a specific user.

Only auser with the DBA role can execute this statement.

SET PASSWORD

set password statement (Hyper SQL)

<set password statenment> ::= SET PASSWORD <passwor d>

Set the password for the current user. <passwor d> is a string enclosed with single quote characters and is case-
sensitive.

SET INITIAL SCHEMA
set theinitial schema for the current user (Hyper SQL)
<set initial schema statenent> ::= SET |IN TI AL SCHEMA <schenma name> | DEFAULT

Change the initial schema for the current user. The initial schema is the schema used by default for SQL statements
issued during a session. If DEFAULT is used, the default initial schemafor all usersis used as the initial schema for
the current user. The separate SET SCHEMA command allows the user to change the schema for the duration of the
session. See also the Sessions and Transactions chapter.

SET DATABASE DEFAULT INITIAL SCHEMA
set the default initial schema for all users (Hyper SQL)

<set dat abase default initial schenm statenent> ::= SET DATABASE DEFAULT | NI Tl AL
SCHEMA <schema nane>

Sets the initial schema for new users. This schema can later be changed with the <set initial schema
st at emrent > command.

CREATE ROLE
role definition

<role definition> ::= CREATE ROLE <role name> [WTH ADM N <grantor>]

107

HyperS@L Access Control

Defines anew role. Initially the role has no rights, except those of the PUBLIC role. Only a user with the DBA role
can execute this command.

DROP ROLE
drop role statement
<drop role statement> ::= DROP ROLE <rol e nanme>

Drop (destroy) arole. If the specified role is the authorization for a schema, the schemais destroyed. Only a user with
the DBA role can execute this statement.

GRANTED BY

grantor determination

GRANTED BY <gr ant or >

<grantor> ::= CURRENT_USER | CURRENT_ROLE

The authorization that is granting or revoking arole or privileges. The optional GRANTED BY <gr ant or > clause
can beused in various statementsthat perform GRANT or REV OKE actions. If the clauseis not used, the authorization
isCURRENT_USER. Otherwisg, it is the specified authorization.

GRANT
grant privilege statement

<grant privilege statement> ::= GRANT <privileges> TO <grantee> [{ <comma>
<grantee> }...] [WTH GRANT OPTION] [GRANTED BY <grantor>]

Assign privileges on schema objects to roles or users. Each <gr ant ee> isaroleor auser. If [W TH GRANT
OPTI ON] isspecified, then the <gr ant ee> can assign the privileges to other <gr ant ee> objects.

<privileges> ::= <object privileges> ON <object nane>

<obj ect privileges>::= ALL PRIVILEGES | <action>[<filter clause>] [{ <comma>
<action> }...]

<action> ::= SELECT | SELECT <left paren> <privilege colum |ist> <right paren>

| DELETE | INSERT [<left paren> <privilege columm |list> <right paren>] | UPDATE
[<left paren> <privilege colum list> <right paren>] | REFERENCES [<left
paren> <privilege colum list> <right paren>] | TRIGGER | USAGE | EXECUTE

<object name> ::= [TABLE] <table nane> | DOVAIN <domain name> |
COLLATI ON <col Il ation nanme> | CHARACTER SET <character set name> | TRANSLATI ON
<transliteration nane> | TYPE <user-defined type name> | SEQUENCE <sequence
generator name> | <specific routine designator> | ROUTINE <routine name> |

FUNCTI ON <function nane> | PROCEDURE <procedure nane>

<privilege colum list> ::= <colum nane |ist>
<filter clause> ::= FILTER <l eft paren> WHERE <search conditi on> <right paren>
<grantee> ::= PUBLIC | <authorization identifier>

The<obj ect pri vil eges> that can be used depend on the type of the <obj ect nane>. These are discussed
in the previous section. For atable, if <pri vi | ege col umm | i st > isnot specified, then the privilege is granted

108

HyperS@L Access Control

on the table, which includes al of its columns and any column that may be added to it in the future. For routines, the
name of the routine can be specified in two ways, either as the generic name as the specific name. HyperSQL allows
referencing all overloaded versions of aroutine at the same time, using its name. This differs from the SQL Standard
which requiresthe use of <speci fi c routine desi gnat or > to grant privileges separately on each different
signature of the routine.

Each <gr ant ee> isthe name of arole or auser. Examples of GRANT statement are given below:

GRANT ALL ON SEQUENCE aSequence TO rol eOr User

GRANT SELECT ON aTabl e TO rol eOr User

GRANT SELECT, UPDATE FI LTER(WHERE aCol utm > 2) ON aTABLE TO rol eOrUser1, roleOrUser2
GRANT SELECT(col umA, col umB), UPDATE(col ummA, colummB) ON TABLE aTabl e TO rol eOr User
GRANT EXECUTE ON SPECI FI C ROUTI NE aroutine_1234 TO rol eOr User

Asmentioned in the general discussion, it is better to define arole for the collection of all the privileges required by
an application. This role is then granted to any user. If further changes are made to the privileges of this role, they
are automatically reflected in all the users that have the role. Fine-grained privileges (those with a FILTER clause)
can be granted to roles only.

GRANT
grant role statement

<grant role statement> ::= GRANT <role name> [{ <comma> <role name> }...]
TO <grantee> [{ <comma> <grantee> }...] [WTH ADM N OPTION] [GRANTED BY
<grantor>]

Assign rolesto roles or users. One or more roles can be assigned to one or more<gr ant ee> objects. A <gr ant ee>
isauser or arole. If the[WTH ADM N OPTI ON] is specified, then each <gr ant ee> can grant the newly
assigned roles to other grantees. An example of user and role creation with grantsis given below:

CREATE USER appuser

CREATE ROLE approl e

GRANT approl e TO appuser

GRANT SELECT, UPDATE ON TABLE at abl e TO approl e
GRANT USAGE ON SEQUENCE asequence to approl e
GRANT EXECUTE ON ROUTI NE aroutine TO approl e

REVOKE privilege
revoke statement

<revoke privilege statement> ::= REVOKE [GRANT OPTION FOR] <privileges> FROM
<grantee> [{ <comma> <grantee>}...] [GRANTED BY <grantor>] RESTRI CT | CASCADE

Revoke privileges from a user or role.
REVOKE role
revoke role statement

<revoke rol e statenment> :: = REVOKE[ADM N OPTI ON FOR] <rol e revoked> [{ <comma>
<role revoked> }...] FROM <grantee> [{ <commm> <grantee> }...] [GRANTED
BY <grantor>] RESTRICT | CASCADE

<rol e revoked> ::= <rol e nanme>

Revoke arole from users or roles.

109

HyperS@L

Chapter 7. Data Access and Change

Fred Toussi, The HSQL Development Group
$Revision: 6121 $

Copyright 2010-2020 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.

2020-06-29

Overview

HyperSQL data access and data change statements are compatible with the latest SQL:2016 Standard. There are afew
extensions and some relaxation of rules, but these do not affect statementsthat are written to the Standard syntax. There
isfull support for classic SQL, as specified by SQL-92, and many enhancements added in later versions of the standard.

Cursors And Result Sets

An SQL dstatement can be executed in two ways. One way is to use the java. sql. St at enment

interface. The Statement object can be reused to execute completely different SQL statements. Alternatively, a
Pr epar edSt at ment can be used to execute an SQL statement repeatedly, and the statements can use parameters.
Using either form, if the SQL statement is a query expression, aResul t Set isreturned.

In SQL, when a query expression (SELECT or similar SQL statement) is executed, an ephemeral table is created.
When this table is returned to the application program, it is returned as a result set, which is accessed row by row by
acursor. A JDBC Resul t Set represents an SQL result set and its cursor.

The minimal definition of a cursor is alist of rows with a position that can move forward. Some cursors also allow
the position to move backwards or jump to any position in thelist.

An SQL cursor has severa attributes. These attributes depend on the query expression. Some of these attributes can
be overridden by specifying qualifiersin the SQL statement or by specifying values for the parameters of the JIDBC
St at enent or Pr epar edSt at enent .

Columns and Rows

The columns of the result set are determined by the query expression. The number of columns and the type and
name characteristics of each column are known when the query expression is compiled and before its execution. This
metadatainformation remains constant regardless of changes to the contents of the tables used in the query expression.
The metadata for the JDBC Resul t Set isintheform of aResul t Set Met aDat a object. Various methods of the
Resul t Set Met aDat a interface return different properties of each column of the Resul t Set .

A result set may contain O or more rows. The rows are determined by the execution of the query expression.

The set MaxRows(i nt) method of JDBC St at enent allows limiting the number of rows returned by the
statement. This limit is conceptually applied after the result has been built, and the excess rows are discarded.

Navigation

A cursor is either scrollable or not. Scrollable cursors allow accessing rows by absolute or relative positioning. No-
scroll cursors only allow moving to the next row. The cursor can be optionally declared with the SQL qualifiers

110

HyperS@L Data Access and Change

SCROLL, or NO SCROLL. The JDBC statement parameter can be specified as: TYPE_ FORWARD_ONLY and
TYPE_SCROLL_INSENSITIVE. The JDBC type TYPE_SCROLL_SENSITIVE is not supported by HSQLDB.

The defaultisNO SCROLL or TYPE_FORWARD_ONLY.

When aJDBC Resul t Set isopened, it is positioned before the first row. Using the next () method, the position
ismoved to the first row. Whilethe Resul t Set is positioned on arow, various getter methods can be used to access
the columns of the row.

Updatability

The result returned by some query expressions is updatable. HSQL DB supports core SQL updatability features, plus
some enhancements from the SQL optional features.

A query expression is updatable if it is a SELECT from a single underlying base table (or updatable view) either
directly or indirectly. A SELECT statement featuring DISTINCT or GROUP BY or FETCH, LIMIT, OFFSET is not
updatable. In an updatabl e query expression, one or more columns are updatable. An updatable column isacolumn that
can betraced directly to the underlying table. Therefore, columnsthat contain expressions are not updatable. Examples
of updatable query expressions are given below. The view V is updatable when its query expression is updatable. The
SELECT statement from this view is also updatable:

SELECT A B FROMT WHERE C > 5

SELECT A, B FROM (SELECT * FROM T WHERE C > 10) AS TT WHERE TT. B <10
CREATE VIEW V(X,Y) AS SELECT AL B FROMT WHERE C > 0 AND B < 10
SELECT X FROMV WVHERE Y = 5

If acursor is declared with the SQL qualifier, FOR UPDATE OF <col umm nane | i st >, then only the stated
columns in the result set become updatable. If any of the stated columns is not actually updatable, then the cursor
declaration will not succeed.

If the SQL qualifier, FOR UPDATE is used, then all the updatable columns of the result set become updatable.
If acursor is declared with FOR READ ONLY, then it is not updatable.

In HyperSQL, if FOR READ ONLY or FOR UPDATE is not used then all the updatable columns of the result set
become updatable. This relaxes the SQL standard rule that in this case limits updatability to only simply updatable
SELECT statements (where all columns are updatable).

In JDBC, CONCUR_READ_ONLY or CONCUR_UPDATABLE can be specified for the St at enent parameter.
CONCUR_UPDATABLE isrequiredif thereturning ResultSet isto be updatable. If CONCUR_READ_ONLY, which
isthe default, is used, then even an updatable ResultSet becomes read-only.

When a Resul t Set is updatable, various setter methods can be used to modify the column values. The names of
the setter methods begin with "update”. After al the updates on arow are done, the updat eRow() method must be
called only once to finalise the row update.

Anupdatable Resul t Set may or may not beinsertable-into. In an insertable Resul t Set , al columns of the result
are updatable and any column of the base table that is not in the result must be a generated column or have a default
value.

IntheResul t Set object, aspecia pseudo-row, called theinsert row, isused to populate valuesfor insertion into the
Resul t Set (and consequently, into the base table). The setter methods must be used on all the columns, followed
by acall toi nsert Row() .

Individual rows from all updatable result sets can be deleted one at atime. The del et eRow() is called when the
Resul t Set ispositioned on arow.

111

HyperS@L Data Access and Change

While using an updatable ResultSet to modify data, it is recommended not to change the same data using another
ResultSet and not to execute SQL data change statements that modify the same data.

Sensitivity

The sensitivity of the cursor relatesto visibility of changes made to the data by the same transaction but without using
the given cursor. While the result set is open, the same transaction may use statements such as INSERT or UPDATE,
and change the data of the tables from which the result set datais derived. A cursor is SENSITIVE if it reflects those
changes. It isSINSENSITIVE if it ignores such changes. It isASENSITIVE if behaviour isimplementation dependent.

The SQL default is ASENSITIVE, i.e., implantation dependent.

In HyperSQL all cursors are INSENSITIVE. They do not reflect changes to the data made by other statements.

Holdability

A cursor isholdableif the result set is not automatically closed when the current transaction is committed. Holdability
can be specified in the cursor declaration using the SQL qualifiers WITH HOLD or WITHOUT HOLD.

In JDBC, holdability is specified using either of the following vaues for the Statement parameter:
HOLD_CURSORS OVER_COMMIT, or CLOSE_CURSORS AT_COMMIT.

The SQL defaultisWITHOUT HOLD.

The JDBC default for HyperSQL result sets is WITH HOLD for read-only result sets and WITHOUT HOLD for
updatable result sets.

If the holdability of a Resul t Set is specified in a conflicting manner in the SQL statement and the JDBC
St at ement object, the JIDBC setting takes precedence.

Autocommit

The autocommit property of a connection is a feature of JDBC and ODBC and is nhot part of the SQL Standard.
In autocommit mode, al transactional statements are followed by an implicit commit. In autocommit mode, all
Resul t Set objects are read-only and holdable.

JDBC Overview

The JDBC settings, ResultSet. CONCUR_READONLY and ResultSet. CONCUR_UPDATABLE are the available
alternatives for read-only or updatability. The default is ResultSet. CONCUR_READONLY .

The JDBC settings, ResultSet. TYPE_FORWARD_ONLY, ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet. TYPE_SCROLL_SENSITIVE are the available alternatives for both scrollability (navigation) and
sensitivity. HyperSQL does not support ResultSet. TYPE_SCROLL_SENSITIVE. The two other alternatives can be
used for both updatable and read-only result sets.

The JDBC settings ResultSet. CLOSE_CURSORS AT_COMMIT and
ResultSet. HOLD CURSORS OVER _COMMIT are the aternatives for the lifetime of the result set. The default is
ResultSet. CLOSE_ CURSORS AT_COMMIT. The other setting can only be used for read-only result sets.

Examples of creating statements for updatable result sets are given below:

Connection ¢ = newConnection();

St at ement st

c.set Aut oCommi t (fal se);

st = c.createStatenment (Resul t Set. TYPE_FORWARD _ONLY, Result Set. CONCUR_UPDATABLE) ;

112

HyperS@L Data Access and Change

‘ st = c.createStatenment (Resul t Set. TYPE_SCROLL_I| NSENSI Tl VE, Resul t Set . CONCUR_UPDATABLE) ;

JDBC Parameters

When a JDBC PreparedStatement or CallableStatement is used with an SQL statement that contains dynamic
parameters, the datatypes of the parameters are resolved and determined by the engine when the statement is prepared.
The SQL Standard has detailed rulesto determine the datatypes and imposes|limits on the maximum length or precision
of the parameter. HyperSQL appliesthe standard ruleswith two exceptionsfor parameterswith String and BigDecimal
Java types. HyperSQL ignores the limits when the parameter value is set, and only enforces the necessary limits
when the PreparedStatement is executed. In all other cases, parameter type limits are checked and enforced when the
parameter is set.

Inthe examplebelow theset St ri ng() callsdo not raise an exception, but one of theexecut e() statementsdoes.

/1 table definition: CREATE TABLE T (NAME VARCHAR(12), ...)

Connection ¢ = newConnection();

Prepar edSt at enent st = c. prepareStat enent ("SELECT * FROM T WHERE NAME = ?");

/1 type of the paraneter is VARCHAR(12), which limts length to 12 characters

st.setString(1, "Eyjafjallajokull"); // string is |longer than type, but no exception is raised
here

set.execute(); // executes with no exception and does not find any rows

/1 but if an UPDATE is attenpted, an exception is raised

st = c.prepareStatenent ("UPDATE T SET NAME = ? WHERE ID = 10");

st.setString(1, "Eyjafjallajokull"); // string is |longer than type, but no exception is raised
here

st.execute(); // exception is thrown when Hyper SQL checks the value for update

JDBC parameters can be set with any compatible type, as supported by the JDBC specification. For CLOB
and BLOB types, you can use streams, or create instances of BLOB or CLOB before assigning them to the
parameters. You can even use CLOB or BLOB objects returned from connections to other RDBMS servers. The
Connecti on. creat eBl ob() andcr eat eC ob() methods can be used to create the new LOBs. For very large
LOB's the stream methods are preferable as they use less memory.

For array parameters, you can use aj ava. sql . Arr ay object that contains the array elements before assigning to
JDBC parameters. The Connecti on. creat eArray (. ..) method can be used to create a new object, or you
can use an Array returned from connections to other RDBMS servers. You can also use Java arrays of primitives to
assign to the SQL array parameters.

Theaboveaso appliestothemethodsof j ava. sqgl . Resul t Set that are used for setting valuesin new and updated
rows in updatable ResultSet objects.

When the Java 8 version of HyperSQL jar is used, the setObject() methods of Pr epar edSt at enent and
Cal | abl eSt at enent also accept objects of the new types introduced in Java 8 and listed below under JDBC
Returned Values. The new Java 8 method, get Cbj ect (i nt col uml ndex, C ass<T> type), canbeused
to retrieve the value of an OUT parameter fromaCal | abl eSt at enent .

JDBC and Data Change Statements

Data change statements, al so called data manipul ation statements (DML) such asINSERT, UPDATE, MERGE can be
caledwithdifferentexecut eUpdat e() methodsof java.sgl.Statementandj ava. sql . Pr epar edSt at enent .
Some of these methods alow you to specify how vaues for generated columns of the table are
returned. These methods are documented in the JavaDoc for or g. hsql db. j dbc. JDBCSt at enent and
org. hsql db. j dbc. JDBCPr epar edSt at enent . HyperSQL can return not just the generated columns, but any
set of columns of the table. You can use this to retrieve the columns values that may be modified by a BEFORE
TRIGGER on the table.

113

HyperS@L Data Access and Change

JDBC Callable Statement

The JDBC CallableStatement interface is used to call Java or SQL procedures that have been defined in the database.
The SQL statement is in the form of CALL procedureName (...) with constant value arguments or with parameter
markers. Note that you must use a parameter marker for OUT and INOUT arguments of the procedure you are calling.
The OUT arguments should not be set before executing the callable statement.

After executing the statement, you can retrieve the OUT and INOUT parameters with the appropriate getXXX()
method.

Procedures can aso return one or more result sets. You should cal the get ResultSet() and
get Mor eResul t s() methods to retrieve the result sets one by one.

SQL functions can also return atable. Y ou can call such functions the same way as procedures and retrieve the table
as a ResultSet.

JDBC Returned Values

The methods of the JDBC ResultSet interface are used to return values and to convert value to different types as
supported by the JDBC specification. Methods of JDBC CallableStatement that have the same signature are used to
return values from procedure calls.

When a CLOB and BLOB abject is returned from a ResultSet, no data is transferred until the datais read by various
methods of j ava. sql . CLOBandj ava. sqgl . BLOB. Datais streamed in large blocks to avoid excessive memory
use.

Array objects arereturned asinstances of j ava. sql . Array.

When the Java 8 version of HyperSQL jar is used, the methods added in Java 8 become available and the behaviour
of the get Cbj ect (i nt col uml ndex) method for retrieving TIMESTAMP WITH TIME ZONE values
changes. With Java 7 and older, this method returns aj ava. sql . Ti mest anp object. With Java 8 it returns a
java.tinme. O f set Dat eTi me object which contains the time zone offset value as well as the other fields of the
TIMESTAMP.

A new method, get Obj ect (i nt col uml ndex, C ass<T> type) isavailablein Java8. With this method,
you specify the required return type. The common types such as String, Integer, byte[] are supported, as well as new
types that can be used for DATE, TIME, TIMESTAMP, and INTERVAL values. The table below shows which Java
classes are the most appropriate for the specified SQL TYPES. In addition, you can use these Java types for values
of SQL type that are not fully matched. For example, j ava. ti me. Local Dat eTi e can be used to retrieve a
DATE value.

java.util.UU D=UUID

java.tine. Local Dat e = DATE

j ava. sql . Dat e = DATE

java.tine. Local Ti me =TIME

java.sgl . Ti me =TIME

java.tine. Local Dat eTi ne = TIMESTAMP
j ava. sgl . Ti mest anp = TIMESTAMP

java.time. O fsetTi ne =TIMEWITH TIME ZONE
java.tine. O fsetDateTi me = TIMESTAMPWITH TIME ZONE
java.tine.Duration=INTERVAL MONTH, INTERVAL YEAR, INTERVAL YEAR TO MONTH

114

HyperS@L Data Access and Change

java.tine. Peri od =INTERVAL SECOND, INTERVAL MINUTE, INTERVAL HOUR, INTERVAL DAY,
and their range combinations

java.sgl . Array =al ARRAY

Cursor Declaration

The DECLARE CURSOR statement is used within an SQL PROCEDURE body. In the current version of HyperSQL,
the cursor isused only to return aresult set from the procedure. Therefore, the cursor must be declared WITH RETURN
and can only be READ ONLY.

DECLARE CURSOR

declare cursor statement

<decl are cursor> ::= DECLARE <cursor nane>

[{ SENSITIVE | INSENSITIVE | ASENSITIVE }] [{ SCROLL | NO SCROLL }]
CURSOR [{ WTH HOLD | WTHOUT HOLD }] [{ WTH RETURN | W THOUT RETURN }]
FOR <query expression>

[FOR { READ ONLY | UPDATE [OF <columm name list>1] }]

The query expression is a SELECT statement or similar, and is discussed in the rest of this chapter. In the example
below a cursor is declared for a SELECT statement. It is later opened to create the result set. The cursor is specified
WITHOUT HOLD, so theresult set is not kept after acommit. Use WITH HOLD to keep the result set. Note that you
need to declare the cursor WITH RETURN asitisreturned by the Cal | abl eSt at enent .

DECLARE t hi scursor SCROLL CURSOR W THOUT HOLD W TH RETURN FOR SELECT * FROM
| NFORVATI ON_SCHEMA. TABLES;

OPEN t hi scursor;

Syntax Elements

The syntax elementsthat can be used in data access and data change statements are described in this section. The SQL
Standard has a very extensive set of definitions for these elements. The BNF definitions given here are sometimes
simplified.

Literals

Literals are used to express constant values. The general type of aliteral is known by its format. The specific type
is based on conventions.

unicode escape elements
unicode escape €l ements

<Uni code escape specifier> M [UESCAPE <guot e><Uni code escape
char act er ><quot e>]

<Uni code escape value> ::= <Unicode 4 digit escape value> | <Unicode 6 digit
escape val ue> | <Uni code character escape val ue>

115

HyperS@L Data Access and Change

<Uni code 4 digit escape val ue> 1= <Uni code escape
char act er ><hexi t ><hexi t ><hexi t ><hexi t >

<Unicode 6 digit escape value> ::= <Unicode escape character><plus sign>
<hexi t ><hexi t ><hexi t ><hexi t ><hexi t ><hexi t >

<Uni code character escape val ue> ::= <Uni code escape character><Uni code escape
character>

<Uni code escape character> ::= a single character other than a <hexit> (a-f, A-
F, 0-9), <plus sign> <quote> <double quote> or <white space>

character literal

character literal

<character string literal> ::= [<introducer><character set specification>]
<quote> [<character representation>. ..] <quote> [{ <separator> <quote>
[<character representation>...] <quote> }...]

<i ntroducer> ::= <underscore>

<character representation> ::= <nonquote character> | <quote synbol >

<nonquot e character> ::= any character apart fromthe quote synbol.

<quot e synbol > :: = <quot e><quot e>

<nati onal character string literal > D= N <quot e> [<character
representation>. ..] <quote> | { <separator> <quote> | <character
representation>...] <quote> }...]

<Uni code character string literal> ::= | <i ntroducer ><character set
specification>] U<anpersand><quote> [<Unicode representation>...] <quote>
[{ <separator> <quote> [<Unicode representation>...] <quote>}...] <Unicode

escape specifier>
<Uni code representation> ::= <character representati on>| <Uni code escape val ue>

The type of acharacter literal is CHARACTER. The length of the string literal is the character length of the type. If
the quote character is used in a string, it is represented with two quote characters. Long literals can be divided into
multiple quoted strings, separated with a space or end-of-line character.

Unicode literals start with U& and can contain ordinary characters and Unicode escapes. A Unicode escape begins
with the backslash (\) character and isfollowed by four hexadecimal characterswhich specify the character code. The
Unicode escape character can be custom defined for a literal string by adding UESPACE as in one of the examples
below.

Example of character literals are given below:

"aliteral' ' string seperated’ ' into parts'

"a string''s literal formwith quote character’

U&' Uni code string with Greek delta \0394 and phi \03a6 letters'

U&' Uni code string with forward slash // as custom escape character' UESCAPE' /'

binary literal

116

HyperS@L Data Access and Change

binary literal

<binary string literal> ::= X <quote> [<space>...] [{ <hexit> [<space>...]
<hexit> [<space>...] }.] <quote> [{ <separator> <quote> [<space>...]
[{ <hexit> [<space>...] <hexit>][<space>...] }...] <quote> }...]
<hexit> ::=<digit>] A| B| C| D| E|J] F] a| b] c]|] d] e] f

Thetype of abinary literal isBINARY . The octet length of the binary literal isthe length of the type. Case-insensitive
hexadecimal charactersare used in the binary string. Each pair of charactersin theliteral representsabytein the binary
string. Long literals can be divided into multiple quoted strings, separated with a space or end-of-line character.

\ X 1abACD34' ' Af' \

bit literal

bit literal

<bit string literal>::= B <quote> [<bit> ...] <quote> [{ <separator> <quot e>
[<bit>...] <quote>}...]

<bit>::=0] 1

The type of abinary literal is BIT. The bit length of the bit literal is the length of the type. Digits 0 and 1 are used
to represent the bits. Long literals can be divided into multiple quoted strings, separated with a space or end-of-line
character.

\ B' 10001001' ' 00010’

numeric literal

numeric literal

<signed nunmeric literal> ::=] <sign>] <unsigned nuneric literal >

<unsi gned nuneric literal> ::= <exact numeric literal> | <approxi mate numeric
literal >

<exact nuneric literal>::=<unsignedinteger>][<period>[<unsignedinteger>]]

| <period> <unsigned integer>

<sign> ::= <plus sign> | <mnus sign>

<approximate nuneric literal> ::= <manti ssa> E <exponent >
<manti ssa> ::= <exact numeric literal >

<exponent > ::= <signed integer>

<signed integer> ::= [<sign>] <unsigned integer>
<unsigned integer> ::= <digit>. ..

The type of an exact numeric literal without adecimal point isINTEGER, BIGINT, or DECIMAL, depending on the
value of the literal (the smallest type that can represent the value is the type).

117

HyperS@L Data Access and Change

The type of an exact numeric literal with adecimal point is DECIMAL. The precision of adecimal literal isthe total
number of digits of the literal. The scale of the literal isthe total number of digitsto the right of the decimal point.

Thetype of an approximate numeric literal is DOUBLE. An approximate numeric literal always includes the mantissa
and exponent, separated by E.

12
34.35
+12E-2

boolean literal

boolean literal

<boolean literal> ::= TRUE | FALSE | UNKNOM

The boolean literal is one of the specified keywords.

datetime and interval literal

datetime and interval literal

<datetine literal> ::= <date literal> | <tine literal> | <tinestanp literal>

<date literal > ::= DATE <date string>

<tine literal> ::= TIME <tine string>

<tinmestanp literal> ::= TI MESTAWP <tinmestanp string>

<date string> ::= <quote> <unquoted date string> <quote>

<tine string> ::= <quote> <unquoted time string> <quote>

<timestanp string> ::= <quote> <unquoted tinestanp string> <quote>

<tinme zone interval > ::= <sign> <hours val ue> <col on> <m nut es val ue>

<date value> ::= <years val ue> <mnus sign> <nonths val ue> <m nus sign> <days
val ue>

<time value> ::= <hours val ue> <col on> <m nut es val ue> <col on> <seconds val ue>
<interval literal>::=1INTERVAL [<sign>] <interval string><interval qualifier>
<interval string> ::= <quote> <unquoted interval string> <quote>

<unquoted date string> ::= <date val ue>

<unquoted tine string> ::= <tine value> [<time zone interval >]

<unquot ed timestanp string> ::= <unquoted date string> <space> <unquoted tine
string>

<unquoted interval string> ::= [<sign>] { <year-nonth literal> | <day-tinme
literal >}

118

HyperS@L Data Access and Change

<year-nmonth literal > ::= <years val ue> [<m nus sign> <nonths value>] | <nonths
val ue>

<day-tine literal > ::= <day-tinme interval > | <time interval >

<day-tine interval > ::= <days val ue> [<space> <hours val ue> [<col on> <m nut es

val ue> [<col on> <seconds value>]]]

<time interval > ::= <hours value> [<col on> <m nutes val ue> [<col on> <seconds
value>]] | <mnutes value> [<col on> <seconds value>] | <seconds val ue>
<years val ue> ::= <datetine val ue>

<nmont hs val ue> ::= <datetine val ue>

<days val ue> ::= <datetine val ue>

<hours value> ::= <datetinme val ue>

<m nutes value> ::= <datetine val ue>

<seconds val ue> ::= <seconds i nteger value> [<period> [<seconds fraction>]]
<seconds integer val ue> ::= <unsigned integer>

<seconds fraction> ::= <unsigned integer>

<datetine val ue> ::= <unsigned integer>

Thetype of adatetime or interval typeis specified in theliteral. The fractional second precision isthe number of digits
in the fractional part of the literal. Details are described in the SQL Language chapter

DATE ' 2008- 08- 08"
TI ME ' 20: 08: 08’
TI MESTAWP ' 2008- 08- 08 20: 08: 08. 235’

I NTERVAL ' 10" DAY
I NTERVAL -'08:08" M NUTE TO SECOND

References, etc.

References are identifier chains, which can be a single identifiers or identifiers chains composed of single identifiers
chained together with the period symboal.

identifier chain

identifier chain

<identifier chain> ::= <identifier> [{ <period> <identifier>}...]
<basic identifier chain> ::= <identifier chain>

A period-separated chain of identifiers. Theidentifiersin anidentifier chain can refer to database objectsin ahierarchy.
The possible hierarchies are as follows. In each hierarchy, elements from the start or the end can be missing, but the
order of elements cannot be changed.

catalog, schema, database object

catalog, schema, table, column

119

HyperS@L Data Access and Change

correlation name, column

Examples of identifier chain are given below:

SELECT MYCATALOG. MYSCHEMA. MYTABLE. MYyCOL FROM MYCATALOG. MYSCHEMA. MYTABLE
DROP TABLE MYCATALOG. MYSCHENVA. MYTABLE CASCADE
ALTER SEQUENCE MYCATALOG. MYSCHEMA. MYSEQUENCE RESTART W TH 100

column reference
column reference

<colum reference> ::= <basic identifier chain> | MODULE <period> <qualified
i dentifier> <period> <colum nane>

Reference a column or aroutine variable.

SQL parameter reference

L parameter reference

<SQ. paraneter reference> ::= <basic identifier chain>
Reference an SQL routine parameter.

contextually typed value specification

contextually typed val ue specification

<contextually typed value specification> ::= <null specification> | <default
speci fication>

<nul | specification> ::= NULL
<default specification> ::= DEFAULT
Specify avalue whose data type or value isinferred from its context.

DEFAULT isused for assignments to table columns that have a default value, or to table columns that are generated
either asan IDENTITY value or as an expression.

NULL can be used only in a context where the type of the value is known. For example, aNULL can be assigned to
a column of the table in an INSERT or UPDATE statement, because the type of the column is known. But if NULL
isused in aSELECT ligt, it must be used in a CAST statement.

Value Expression

Vaue expression is ageneral name for all expressions that return a value. Different types of expressions are allowed
in different contexts.

value expression primary
value expression primary

<val ue expression primary> ::= <parenthesized value expression> |
<nonpar ent hesi zed val ue expressi on prinary>

120

HyperS@L Data Access and Change

<parent hesi zed val ue expression> ::= <left paren> <value expression> <right
par en>
<nonparent hesi zed val ue expression prinmary> ::= <unsigned val ue specification>

| <columm reference> | <set function specification>| <scal ar subquery> | <case
expression> | <cast specification> | <next value expression> | <current val ue
expression> | <routine invocation>

Specify avalue that is syntactically self-delimited.

value specification

value specification

<val ue specification> ::= <literal> | <general value specification>

<unsi gned value specification> ::= <unsigned literal> | <general value
speci fication>

<target specification> ::= <host paraneter specification> | <SQL paraneter
reference> | <colum reference> | <dynanic paraneter specification>

<sinpl e target specification>::=<host paraneter specification>]| <SQ paraneter
reference> | <colum reference> | <enbedded vari abl e nane>

<host paraneter specification> ::= <host paranmeter nanme> [<indicator
par amet er> |

<dynam c paraneter specification> ::= <question mark>

Specify one or more values, host parameters, SQL parameters, dynamic parameters, or host variables.
row value expression

row value expression

<row value expression> ::= <row value special case> | <explicit row value
construct or >

<row val ue predicand> ::= <row value special case> | <row value constructor
pr edi cand>

<row val ue special case> ::= <nonparenthesi zed val ue expression prinmary>

<explicit rowval ue constructor> ::=<left paren> <row val ue constructor el emrent >
<conma> <row val ue constructor elenent list> <right paren> |

ROW <l eft paren> <row value constructor elenment list> <right paren> | <row
subquery>

Specify arow consisting of one or moreelements. A commaseparated list of expressions, enclosed in brackets, with the
optional keyword ROW. In SQL, arow containing a single element can often be used where asingle valueis expected.

set function specification
set function specification

<set function specification> ::= <aggregate function> | <grouping operation>

121

HyperS@L Data Access and Change

<groupi ng operation> ::= GROUPING <l eft paren> <columm reference> [{ <coma>
<columm reference> }...] <right paren>

Specify an integer value formed by bits denoting the presence of the column in the current row of the result of
GROUPING SETS. HyperSQL supports <gr oupi hg oper at i on> from version 2.5.1.

COALESCE

coal esce expression

<coal esce expression> := COALESCE <left paren> <value expression> { <coma>
<val ue expression> }... <right paren>

Replace null values with another value. The coalesce expression has two or more instances of <value expression>. If
the first <value expression> evaluates to a non-null value, it isreturned as the result of the coalesce expression. If itis
null, the next <val ue expr essi on> isevauated and if it evaluates to a non-non value, it is returned, and so on.

The type of the return value of a COALESCE expression is the aggregate type of the types of all the <val ue
expr essi on> instances. Therefore, any value returned isimplicitly cast to thistype. HyperSQL also features built-
in functions with similar functionality.

NULLIF
nullif expression

<nullif expression> := NULLIF <left paren> <val ue expression> <comma> <val ue
expressi on> <ri ght paren>

Return NULL if two values are equal. If the result of the first <val ue expressi on> isnot equa to the result
of the second, then it is returned, otherwise NULL is returned. The type of the return value is the type of the first
<val ue expression>.

\ SELECT i, NULLIF(n, 'not defined) FROMt

CASE

case specification

<case specification> ::= <sinple case> | <searched case>

<si npl e case> ::= CASE <case operand> <sinpl e when clause>... [<else clause>]
END

<searched case> ::= CASE <searched when clause>... [<else clause>] END

<si nmpl e when cl ause> ::= WHEN <when operand |ist> THEN <resul t>

<sear ched when cl ause> ::= WHEN <search conditi on> THEN <resul t>

<el se clause> ::= ELSE <result>

<case operand> ::= <row val ue predicand> | <overlaps predicate part 1>

<when operand list> ::= <when operand> [{ <conma> <when operand> }...]

<when operand> ::= <row value predicand> | <conparison predicate part 2> |

<between predicate part 2> | <in predicate part 2> | <character |ike predicate

122

HyperS@L Data Access and Change

part 2> | <octet like predicate part 2> | <simlar predicate part 2> | <regex |like
predicate part 2> | <null predicate part 2> | <quantified conparison predicate
part 2> | <match predicate part 2> | <overlaps predicate part 2> | <distinct
predi cate part 2>

<result> ::= <result expression> | NULL
<result expression> ::= <val ue expression>

Specify a conditional value. The result of a case expression is always a value. All the values introduced with THEN
must be of the same type or convertible to the same type. The WHEN clause of CASE can be used in two different
forms. The first form starts with a variable and the WHEN clauses follow, either as possible values for the variable,
or as conditions. The second form does not start with a variable and each WHEN is followed by a self-contained
conditional expression which can use any variables.

Some simple examples of the CASE expression are given below. The first two examples return 'Britain’, ‘Germany’,
or 'Other country' depending on the value of dial code. The third example uses IN and smaller-than predicates.

CASE di al code WHEN 44 THEN 'Britain' WHEN 49 THEN ' Germany' ELSE ' Qther country' END

CASE WHEN di al code=44 THEN 'Britain' WHEN di al code=49 THEN ' Ger many' WHEN di al code < 0 THEN ' bad
dial code' ELSE 'Qher country' END

CASE di al code WHEN | N (44, 49,30) THEN ' Europe' WHEN I N (86,91,92) THEN 'Asia’ WHEN < O THEN ' bad
dial code' ELSE 'Qher continent' END

The case statement can be far more complex and involve several conditions.
CAST
cast specification

<cast specification> ::= CAST <left paren> <cast operand> AS <cast target>
<right paren>

<cast operand> ::= <value expression> | <inplicitly typed val ue specification>
<cast target> ::= <dommin name> | <data type>

Specify a data conversion. Data conversion takes place automatically among variants of a general type. For example,
numeric values are freely converted from one type to another in expressions.

Explicit type conversion is necessary in two cases. One case is to determine the type of a NULL value. The other
case isto force conversion for specia purposes. Values of data types can be cast to a character type. The exception
is BINARY and OTHER types. The result of the cast is the literal expression of the value. Conversely, a value of
a character type can be converted to another type if the character value is a literal representation of the value in the
target type. Special conversions are possible between numeric and interval types, which are described in the section
covering interval types.

The examples below show examples of cast with their result:

CAST (NULL AS TI MESTAMP)

CAST (' 199 ' AS INTEGER) = 199

CAST ('tRue ' AS BOOLEAN) = TRUE

CAST (INTERVAL '2' DAY AS | NTEGER) = 2

CAST (' 1992-04-21' AS DATE) = DATE ' 1992- 04-21'

NEXT VALUE FOR

next value expression

123

HyperS@L Data Access and Change

<next val ue expression> ::= NEXT VALUE FOR <sequence generator nane>

Return the next value of a sequence generator. This expression can be used as a select list element in queries, or in
assignments to table columns in data change statements. If the expression is used more than once in a single row that
is being evaluated, the same value is returned for each invocation. After evaluation of the particular row is complete,
the sequence generator will return a different value from the old value. The new value is generated by the sequence
generator by adding the increment to the last value it generated. In SQL syntax compatibility modes, variants of this
expression in different SQL dialects are supported. |n the example below the expression is used in an insert statement:

‘I NSERT | NTO MYTABLE(COL1, COL2) VALUES 2, NEXT VALUE FOR MYSEQUENCE

CURRENT VALUE FOR
current value expression
<current val ue expression> ::= CURRENT VALUE FOR <sequence generat or nanme>

Returnthelatest valuethat wasreturned by the NEXT VALUE FOR expression for asequence generator in this session.
In the example below, the value that was generated by the sequence for the first insert, is reused for the second insert:

I NSERT | NTO MYTABLE(COL1, COL2) VALUES 2, NEXT VALUE FOR MYSEQUENCE;
I NSERT | NTO CHI LDTABLE(COL1, COL2) VALUES 10, CURRENT VALUE FOR MYSEQUENCE;

value expression

value expression

<val ue expression> ::= <nuneric val ue expression> | <string val ue expression>
| <datetime value expression> | <interval value expression> | <bool ean val ue
expression> | <row val ue expressi on>

An expression that returns avalue. The value can be asingle value, or arow consisting more than one value.
numeric value expression

numeric value expression

<nuneric val ue expression> ::= <ternk | <nuneric val ue expression> <plus sign>
<term> | <numeric val ue expression> <mnus sign> <ternp

<ternk ::= <factor> | <ternp <asterisk> <factor> | <ternmr <solidus> <factor>
<factor> ::= [<sign>] <nuneric primry>
<nuneric primary> ::= <value expression primary> | <nuneric value function>

Specify a numeric value. The BNF indicates that <ast er i sk> and <sol i dus> (the operators for multiplication
and division) have precedence over <mi nus si gn>and <pl us si gn>.

numeric value function
numeric value function

<nuneric value function> ::= <position expression> | <extract expression> |
<l ength expression> ...

124

HyperS@L Data Access and Change

Specify afunction yielding a value of type numeric. The supported numeric value functions are listed and described
inthe Built In Functions chapter.

string value expression

string value expression

<string val ue expression> ::= <string concatenation> | <string factor>
<string factor> ::= <value expression primary> | <string value function>
<string concatenation> ::= <string val ue expressi on> <concatenati on operator>

<string factor>
<concat enation operator> ::= ||

Specify a character string value, a binary string value, or a bit string value. The BNF indicates that a string value
expression can be formed by concatenation of two or more <val ue expressi on pri mary>. The types of the
<val ue expressi on pri mary> elements must be compatible, that is, all must be string, or binary or bit string
values.

character value function
string value function
<string value function> ::= ...

Specify afunction that returns a character string or binary string. The supported character value functions are listed
and described in the Built In Functions chapter.

datetime value expression
datetime value expression

<datetine val ue expression> ::= <datetine tern> | <interval value expression>
<plus sign> <datetinme ternr | <datetime val ue expressi on> <plus sign> <interval
ternr | <datetime val ue expression> <m nus sign> <interval ternp

<datetine terms ::= <datetine factor>

<datetine factor> ::= <datetinme primary> [<tine zone>]

<datetine primary> ::= <val ue expression primary> | <datetine value function>
<time zone> ::= AT <tine zone specifier>

<tinme zone specifier> ::= LOCAL | TIME ZONE <interval primry>

Specify a datetime value. Details are described in the SQL Language chapter.

datetime value function

datetime value function

<datetine value function> ::= ...

Specify a function that returns a datetime value. The supported datetime value functions are listed and described in
the Built In Functions chapter.

125

HyperS@L Data Access and Change

interval term

interval value expression

<interval value expression> ::= <interval term | <interval value expression
1> <plus sign> <interval term 1> | <interval value expression 1> <m nus sign>
<interval term 1> | <left paren> <datetine value expression> <m nus sign>

<datetine terns <right paren> <interval qualifier>

<interval termr ::= <interval factor> | <interval term 2> <asterisk> <factor>
| <interval term 2> <solidus> <factor> | <ternp <asterisk> <interval factor>

<interval factor> ::=[<sign>] <interval prinary>

<interval primary> ::= <value expression primary> [<interval qualifier>] |
<interval value function>

<interval value expression 1> ::= <interval value expression>

<interval term1> ::= <interval ternp

<interval term2> ::= <interval ternp

Specify an interval value. Details are described in the SQL Language chapter.

interval absolute value function

interval value function

<interval value function> ::= <interval absolute value function>

<interval absolute value function> ::= ABS <left paren> <interval value
expressi on> <right paren>

Specify a function that returns the absolute value of an interval. If the interval is negative, it is negated, otherwise
the original valueis returned.

boolean value expression
boolean value expression

<bool ean val ue expression> ::= <bool ean ternr> | <bool ean val ue expression> OR
<bool ean terne

<bool ean term> ::= <bool ean factor> | <bool ean tern> AND <bool ean factor>

<bool ean factor> ::= [NOT] <bool ean test>

<bool ean test> ::= <boolean primary> [IS [NOT] <truth value>]

<truth value> ::= TRUE | FALSE | UNKNOWN

<bool ean primary> ::= <predi cate> | <bool ean predi cand>

<bool ean predicand> ::= <parenthesized boolean value expression> |

<nonpar ent hesi zed val ue expressi on prinary>

126

HyperS@L Data Access and Change

<par ent hesi zed bool ean value expression> ::= <left paren> <boolean value
expressi on> <ri ght paren>

Specify a boolean value.

Predicates

Predicates are conditions and eval uate to abool ean value. Some predi cates have two sides. Theleft side of the predicate,
the<r ow val ue pr edi cand>, isthecommon element of all two-sided predicates. Thiselementisageneralisation
of both <val ue expressi on>, whichisascalar, and of <expl i cit row val ue constructor >, which
isarow. The two sides of a predicate can be split in CASE expressions where the <r ow val ue predi cand>
is part of multiple predicates.

In the following example, a column of the table is the left side of two predicates in a CASE expression.

SELECT CASE city WHEN ' Gsl o' THEN ' Scandi navia' WHEN IN (' Dallas', 'Boston') THEN ' America' ELSE
'?" END FROM cust oner

The number of fieldsin al <r ow val ue predi cand> used in predicates must be the same and the types of the
fieldsin the same position must be compatible for comparison. If either of these conditions does not hold, an exception
israised. The number of fieldsin arow is called the degree.

In many types of predicates (but not all of them), if the<r ow val ue predi cand> evaluatesto NULL, the result
of the predicate is UNKNOWN. If the <r ow val ue predi cand> has more than one element, and one or more
of thefields evaluate to NULL, the result depends on the particular predicate.

comparison predicand
comparison predicate
<conparison predi cate> ::= <row val ue predi cand> <conp op> <row val ue predi cand>

<conmp op> ::= <equal s operator> | <not equal s operator> | <less than operator>
| <greater than operator> | <less than or equals operator> | <greater than or
equal s operator>

Specify a comparison of two row values. If either <row val ue predi cand> evaluates to NULL, the result of
<conpari son predi cat e>isUNKNOWN. Otherwise, the result is TRUE, FALSE or UNKNOWN.

If the degree of <r ow val ue predi cand> islarger than one, comparison is performed between each field and
the corresponding field in the other <r ow val ue pr edi cand> from left to right, one by one.

When comparing two elements, if either field is NULL then the result is UNKNOWN.

For <equal s oper at or >, if the result of comparison is TRUE for all field, the result of the predicateis TRUE. If
theresult of comparison is FAL SE for onefield, the result of predicateis FAL SE. OtherwisetheresultisUNKNOWN.

The <not equal s operator> istrandated to NOT (<row val ue predicand> = <row val ue
predi cand>).

The<l ess than or equal s operat or>istrandatedto (<r ow val ue predi cand> = <row val ue
predi cand>) OR (<row val ue predi cand> < <row val ue predi cand>).The<greater than
or equal s oper at or > istrandated similarly.

For the<l ess than operator>and<greater than operator>,iftwo fieldsat agiven position are
equal, then comparison continues to the next field. Otherwise, the result of the last performed comparison is returned
asthe result of the predicate. This meansthat if the first field is NULL, the result is always UNKNOWN.

127

HyperS@L Data Access and Change

Thelogic that governs NULL valuesand UNKNOWN result isasfollows: Suppose the NULL valueswere substituted
by arbitrary real values. If substitution cannot change the result of the predicate, then the result is TRUE or FALSE,
based on the existing non-NULL values, otherwise the result of the predicate is UNKNOWN.

The examples of comparison given below use literals, but the literals actually represent the result of evaluation of
Some expression.

((1, 2, 3, 4 =(1, 2, 3, 4) IS TRE

((1, 2, 3, 4 =(1, 2, 3, 5)) IS FALSE

((1, 2, 3, 4) < (1, 2, 3, 4)) IS FALSE

((1, 2, 3, 4 < (1, 2, 3, 5)) IS TRUE

((NULL, 1, NULL) = (NULL, 1, NULL)) IS UNKNOMN
((NULL, 1, NULL) = (NULL, 2, NULL)) IS FALSE
((NULL, 1, NULL) <> (NULL, 2, NULL)) IS TRUE
((NULL, 1, 2) <all operators> (NULL, 1, 2)) IS UNKNOWN
((1, NULL, ...) < (1, 2, ...)) 1S UNKNOW

((1, NULL, ...) < (2, NULL, ...)) IS TRUE
((2, NULL, ...) < (1, NULL, ...)) IS FALSE
BETWEEN

between predicate
<bet ween predi cate> ::= <row val ue predi cand> <between predicate part 2>

<between predicate part 2> ::=[NOI' | BETWEEN [ASYMMETRIC | SYMMETRIC] <row
val ue predi cand> AND <r ow val ue predi cand>

Specify arange comparison. The default is ASYMMETRIC. The expression X BETWEEN Y AND Zisequivalent
to(X >= Y AND X <= Z). Therefore, if Y > Z, the BETWEEN expression is never true. The expression X
BETWEEN SYMVETRIC Y AND Zisequivalentto(X >= Y AND X <= Z) OR (X >= Z AND X <=
Y) . TheexpressionZ NOT BETVEEN . .. isequivalentto NOT (Z BETWEEN . ..).If any of thethree<r ow
val ue predi cand> evaluatesto NULL, the result is UNKNOWN.

IN

in predicate

<in predicate> ::= <row value predicand> [NOT] IN <in predi cate val ue>

<in predicate value> ::= <table subquery> | <left paren> <in value list> <right
par en>

| <left paren> UNNEST <l eft paren> <array val ue expressi on> <ri ght paren> <ri ght
par en>

<in value |list> ::= <row value expression> [{ <comm> <row value
expression> }...]

Specify a quantified comparison. The expression X NOT IN Y is equivaenttoNOT (X IN Y).The(<in
val ue |ist>) isconvertedinto atable with one or more rows. The expression X | N Yisequivaentto X =
ANY Y,whichisa<quantified conpari son predicate>.

If the<t abl e subquer y> returns no rows, the result is FALSE. Otherwisethe <r ow val ue predi cand>is
compared one by one with each row of the<t abl e subquer y>.

If the comparison is TRUE for at least onerow, theresultis TRUE. If the comparison is FALSE for all rows, the result
is FALSE. Otherwise the result is UNKNOWN.

128

HyperS@L Data Access and Change

HyperSQL supports an extension to the SQL Standard to allow an array to be used in the <in predicate value>.
This is intended to be used with prepared statements where a variable length array of values can be used as the
parameter value for each call. The example below shows how thisisused in SQL. The JDBC code must create a new
j ava. sql . Ar r ay object that contains the values and set the parameter with this array.

SELECT * FROM customer WHERE firstnane | N (UNNEST(?))

Connection conn;

Prepar edSt at enent ps;

/1 conn and ps are instantiated here

Array arr = conn.createArrayOdf ("I NTEGER', new Integer[] {1, 2, 3});
ps.setArray(1, arr);

Resul t Set rs = ps. executeQuery();

LIKE

like predicate

<like predicate> ::= <character |ike predicate> | <octet |ike predicate>
<character like predicate> ::= <row value predicand> [NOT] LIKE <character

pattern> [ESCAPE <escape character>]

<character pattern> ::= <character val ue expressi on>
<escape character> ::= <character val ue expression>
<octet like predicate> ::= <row value predicand> [NOT] LIKE <octet pattern>

[ESCAPE <escape octet>]
<octet pattern> ::= <hinary val ue expression>
<escape octet> ::= <binary val ue expression>

Specify a pattern-match comparison for character or binary strings. The <r ow val ue predi cand> is aways
a<string value expression> of character or binary type. The <char act er pattern> or <oct et

pattern>isa<string val ue expressi on> in which the underscore and percent characters have special
meanings. The underscore means match any one character, while the percent means match a sequence of zero or more
characters. The<escape char act er > or<escape oct et >isasoa<stri ng val ue expressi on> that
evaluates to a string of exactly one character length. If the underscore or the percent is required as normal characters
in the pattern, the specified <escape char act er > or <escape oct et > can be used in the pattern before the
underscore or the percent. The<r ow val ue predi cand> iscompared withthe<char act er pattern>and
the result of comparison is returned. If any of the expressions in the predicate evaluates to NULL, the result of the
predicateis UNKNOWN. The expression A NOT LI KE Bisequivalentto NOT (A LI KE B) . If thelength of the
escapeisnot 1 or it is used in the pattern not immediately before an underscore or a percent character, an exception
israised.

ISNULL
null predicate
<null predicate> ::= <row value predicand> IS [NOT] NULL

Specify atest for anull value. The expression X 1S NOT NULL isNOT equivalent to NOT (X |'S NULL) if the
degree of the<r ow val ue predi cand>islarger than 1. Therulesare: If dl fieldsarenull, X 1 S NULL isTRUE
and X 1'S NOT NULL isFALSE. If only somefieldsarenull,bothX 1'S NULL and X | S NOT NULL are FALSE.
If dl fieldsarenot null, X 1'S NULL isFALSEand X 1S NOT NULL isTRUE.

129

HyperS@L Data Access and Change

ALL and ANY
guantified comparison predicate

<quantified conparison predicate> ::= <row value predicand> <conp op>
<quantifier> <table subquery>

<quantifier> ::= <all> | <sonme>
<all> ::= ALL
<sonme> ::= SOME | ANY

Specify a quantified comparison. For a quantified comparison, the <r ow val ue predi cand> iscompared one
by one with each row of the<t abl e sub query>.

If the <t abl e subquer y> returns no rows, then if ALL is specified the result is TRUE, but if SOVE or ANY is
specified the result is FALSE.

If ALL is specified, if the comparison is TRUE for all rows, the result of the predicate is TRUE. If the comparison is
FALSE for at least one row, the result is FALSE. Otherwise the result is UNKNOWN.

If SOMVE or ANY is specified, if the comparison is TRUE for at least one row, theresult is TRUE. If the comparisonis
FALSE for al rows, theresult is FALSE. Otherwisetheresultis UNKNOWN. Note that the IN predicate is equivalent
tothe SOME or ANY predicate using the <equal s oper at or >,

In the examples below, the date of an invoice is compared to holidaysin agiven year. In the first example the invoice
date must equal one of the holidays, in the second exampleit must be later than all holidays (later than thelast holiday),
in the third example it must be on or after some holiday (on or after the first holiday), and in the fourth example, it
must be before al holidays (before the first holiday).

i nvoi ce_date = SOVE (SELECT hol i day_dat e FROM hol i days)
invoice_date > ALL (SELECT hol i day_date FROM hol i days)
i nvoi ce_date >= ANY (SELECT hol i day_dat e FROM hol i days)
i nvoi ce_date < ALL (SELECT hol i day_date FROM hol i days)

EXISTS
exists predicate
<exi sts predicate> ::= EXI STS <tabl e subquery>

Specify atest for a non-empty set. If the evaluation of <t abl e subquer y> resultsin one or more rows, then the
expression is TRUE, otherwise FALSE.

UNIQUE
unique predicate
<uni que predicate> ::= UNl QUE <tabl e subquery>

Specify atest for the absence of duplicate rows. Theresult of thetest is either TRUE or FALSE (never UNKNOWN).
Therowsof the<t abl e subquer y> that contain one or more NULL values are not considered for thistest. If the
rest of the rows are distinct from each other, the result of the test is TRUE, otherwiseit is FALSE. The distinctness of
rows X and Y istested with the predicate X 1 S DI STI NCT FROM Y.

130

HyperS@L Data Access and Change

MATCH
match predicate

<mat ch predicate> ::= <row val ue predi cand> MATCH[UNIQUE] [SIMPLE | PARTI AL
| FULL] <table subquery>

Specify atest for matching rows. The default is MATCH SIMPLE without UNIQUE. The result of the test is either
TRUE or FALSE (never UNKNOWN).

Theinterpretation of NULL valuesis different from other predicates and quite counter-intuitive. If the<r ow val ue
pr edi cand>isNULL, or al of itsfieldsare NULL, the result is TRUE.

Otherwise, the<r ow val ue predi cand> iscompared with each row of the<t abl e subquery>.

If SIMPLE is specified, if some field of <r ow val ue predi cat e>isNULL, theresult is TRUE. Otherwise if
<row val ue predi cat e> isequal tooneor morerowsof <t abl e subquer y> theresultisTRUE if UNIQUE
is not specified, or if UNIQUE is specified and only one row matches. Otherwise the result is FALSE.

If PARTIAL is specified, if the non-null values <r ow val ue predi cat e> are equal to those in one or more
rows of <t abl e subquer y> theresult is TRUE if UNIQUE is not specified, or if UNIQUE is specified and only
one row matches. Otherwise the result is FALSE.

If FULL is specified, if some field of <r ow val ue predi cat e>is NULL, the result is FALSE. Otherwise if
<row val ue predi cat e>isequal tooneor morerowsof <t abl e subquer y>theresultisTRUE if UNIQUE
is not specified, or if UNIQUE is specified and only one row matches.

Note that MATCH can aso be used in FOREIGN KEY constraint definitions. The exact meaning is described in the
Schemas and Database Objects chapter.

CONTAINS
contains predicate

<contai ns predi cate> ::= PERI OD <row val ue predi cand> CONTAI NS PERI OD <r ow val ue
pr edi cand>

Specify atest for two datetime periods. Each <r ow val ue predi cand> must have two fields and the fields
together represent a datetime period. So the predicates is always in the form PERI OD (X1, X2) CONTAI NS
PERI OD (Y1, Y2).Fieldsineach period are always a datetime value of the same type (DATE or TIMESTAMP).

All datetime values are converted to TIMESTAMP WITH TIME ZONE. The second datetime value must be after the
first, otherwise a data error is returned.

If the second period is fully within the first period, the result is TRUE. Otherwiseit isfalse.
If any of the valuesis NULL, theresult is UNDEFINED.

EQUALS

equals predicate

<equal s predicate> ::= PERIOD <row value predi cand> EQUALS PERI OD <row val ue
pr edi cand>

Specify atest for two datetime periods. The conversions and checks are applied the same way aswith the CONTAINS
predicate. If the two periods have the same begin and end datetime values the result is TRUE. Otherwiseit isfalse.

131

HyperS@L Data Access and Change

If any of the valuesis NULL, theresult is UNDEFINED.
ISDISTINCT
isdistinct predicate

<di stinct predicate> ::= <row value predicand> IS [NOT] DI STINCT FROM <row
val ue predi cand>

Specify a test of whether two row values are distinct. The result of the test is either TRUE or FALSE (never
UNKNOWN). The degree the two <r ow val ue predi cand> must be the same. Each field of the first <r ow
val ue predi cand> iscompared to the field of the second <r ow val ue predi cand> at the same position.
If onefield is NULL and the other is not NULL, or if the elements are NOT equal, then the result of the expression
is TRUE. If no comparison result is TRUE, then the result of the predicate is FALSE. The expression X |'S NOT
DI STI NCT FROM Yisequivadentto NOT (X IS DI STINCT FORM Y) . The following check returns true if
startdateis not equal to enddate. It also returnstrueif either startdate or enddateisNULL. It returnsfalsein other cases.

\ startdate |S DI STINCT FROM enddat e \

OVERLAPS
overlaps predicate
<overl aps predicate> ::= <row val ue predi cand> OVERLAPS <row val ue predi cand>

<over | aps predi cate> ::= PER OD <row val ue predi cand> OVERLAPS PERI OD <r ow val ue
predi cand>

The OVERLAPS predicate tests for an overlap between two datetime periods. This predicate has two forms. The one
without the PERIOD keywordsis more relaxed in terms of valid periods.

If there isthere is any overlap between the two datetime periods, the result is TRUE. Otherwiseit isfalse.
If any of the valuesis NULL, theresultis UNDEFINED.

In the example below, the period is compared with aweek long period ending yesterday.

| (startdate, enddate) OVERLAPS (CURRENT_DATE - 7 DAY, CURRENT_DATE - 1 DAY)

PRECEDES
precedes predicate

<precedes predicate> ::= PER OD <row val ue predi cand> [| MVEDI ATELY] PRECEDES
PERI OD <r ow val ue predi cand>

Specify atest for two datetime periods. The conversions and checks are applied the same way aswith the CONTAINS
predicate. If the second period begins after the end of the first period, the result is TRUE. Otherwiseit isfalse.

If IMMEDIATELY is specified, the second period must follow immediately after the end of the first period. This
means the end of the first period is the same point of time as the start of the second period.

If any of the valuesis NULL, theresultis UNDEFINED.

SUCCEEDS

132

HyperS@L Data Access and Change

succeeds predicate

<succeeds predicate> ::= PER OD <row val ue predicand> [| MVEDI ATELY] SUCCEEDS
PEDI OD <r ow val ue predi cand>

Specify atest for two datetime periods with similar syntax to PRECEDES. If the first period begins after the end of
the second period, the result is TRUE. Otherwiseit isfalse.

If IMMEDIATELY is specified, the first period must follow immediately after the end of the second period.
If any of the valuesis NULL, the result is UNKNOWN.

The example below shows a predicate that returns TRUE.

PERI OD (CURRENT DATE - 7 DAY, CURRENT DATE) | MVEDI ATELY PRECEDES (CURRENT DATE, CURRENT DATE + 7
DAY)

Aggregate Functions

aggregate function
aggregate function
<aggregate function> ::= COUNT <left paren> <asterisk> <right paren> [<filter
clause>] | <general set function> [<filter clause>] | <array aggregate

function> [<filter clause>]

<general set function> ::= <set function type> <left paren>[<set quantifier>]
<val ue expression> <right paren>

<set function type> ::= <conputational operation>

<conput ational operation>::= AVG| MAX| MN| SUM| EVERY | ANY | SOME | COUNT
| STDDEV_POP | STDDEV_SAMP | VAR SAMP | VAR POP | MEDI AN

<set quantifier> ::= DI STINCT | ALL

<filter clause> ::= FILTER <l eft paren> WHERE <search condition> <right paren>
<array aggregate function> ::= ARRAY AGG <left paren> [<set quantifier>]

<val ue expression> [<order by clause>] <right paren>

<group concat function> ::= GROUP_CONCAT <left paren> [<set quantifier>]
<val ue expression> [<order by clause>] [SEPARATOR <separator>] <right paren>

<separator> ::= <character string literal >
Specify a value computed from a collection of rows.

An aggregate function is used exclusively ina<query speci fi cati on> and itsuse transforms anormal query
into an aggregate query returning asinglerow instead of the multiple rowsthat the original query returns. For example,
SELECT acol umtm <t abl e expr essi on>isaquery that returnsthe value of acolumnfor all the rowsthe satisfy
the given condition. But SELECT MAX(acol utm) <t abl e expr essi on> returns only one row, containing
the largest value in that column. The query SELECT COUNT(*) <t abl e expressi on> returns the count of
rows, while SELECT COUNT(acol utm) <t abl e expr essi on> returns the count of rows where acol unm
'S NOT NULL.

133

HyperS@L Data Access and Change

If the<t abl e expressi on>isagrouped table (hasaGROUP BY clause), the aggregate function returns the result
of the COUNT or <conput ati onal oper ati on> for each group. In this case the result has the same number
of rows as the original grouped query. For example, SELECT SUM acol unm) <tabl e expressi on> when
<t abl e expressi on>hasaGROUP BY clause, returns the sum of valuesfor acol umm in each group.

If all values are NULL, the aggregate function (except COUNT) returns NULL.

The SUM operations can be performed on numeric and interval expressionsonly. AVG and MEDIAN can beperformed
on numeric, interval or datetime expressions. AV G returnsthe average value, while SUM returnsthe sum of all values.
MEDIAN returns the middle value in the sorted list of values.

MAX and MIN can be performed on all types of expressions and return the minimum or the maximum value.
COUNT(*) returns the count of all values, including nulls, while COUNT(<val ue expressi on>) returns the

count of non-NULL values. COUNT with DISTINCT also accepts multiple arguments. In this usage the distinct
combinations of the arguments are counted. Examples below:

SELECT COUNT(DI STINCT firstnane, |astnane) FROM custoner
SELECT COUNT(DI STINCT (firstnane, |astnane)) FROM custoner

The EVERY, ANY and SOME operations can be performed on boolean expressions only. EVERY returns TRUE if
all the values are TRUE, otherwise FALSE. ANY and SOME are the same operation and return TRUE if one of the
valuesis TRUE, otherwise it returns FAL SE.

The other operations perform the statistical functions STDDEV_POP, STDDEV_SAMP, VAR_SAMP, VAR_POP
on numeric values. NULL values are ignored in calculations.

User-defined aggregate functions can be defined and used instead of the built-in aggregate functions. Syntax and
examples are given in the SQL-Invoked Routines chapter.

The<filter clause> alowsyou to add a search condition. When the search condition evaluates to TRUE for
arow, the row isincluded in aggregation. Otherwise the row is not included. In the example below a single query
returns two different filtered counts:

SELECT COUNT(I TEM FILTER (WHERE GENDER = 'F') AS "FEMALE COUNT", COUNT(!TEM FILTER (WHERE
GENDER = 'M) AS "MALE COUNT" FROM PECPLE

ARRAY_AGG isdifferent from all other aggregate functions, asit does not ignorethe NULL values. This set function
returns an array that contains all the values, for different rows, for the<val ue expr essi on>. For example, if the
<val ue expr essi on>isacolumn reference, the SUM function adds the valuesfor all the row together, while the
ARRAY _AGG function adds the value for each row as a separate element of the array. ARRAY _AGG can include an
optional <or der by cl ause>. If thisisused, the elementsof thereturned array are sorted according tothe<or der
by cl ause>, which can reference al the available columns of the query, not just the <val ue expressi on>
that isused asthe ARRAY _AGG argument. The<or der by cl ause> can have multiple e ements (columns) and
each element can include NULLS LAST or DESC qudlifiers. No <separ at or > isused with this function.

GROUP_CONCAT is a specialised function derived from ARRAY_AGG. This function computes the array in the
same way as ARRAY_AGG, removes al the NULL elements, then returns a string that is a concatenation of the
elements of the array. If <separ at or > has been specified, it is used to separate the elements of the array. Otherwise
the commalis used to separate the elements.

The exampl e below shows agrouped query with ARRAY _AGG and GROUP_CONCAT. The CUSTOMER tablethat
isincluded for testsin the DatabaseManager GUI app is the source of the data.

SELECT LASTNAME, ARRAY_AGGE FlI RSTNAME ORDER BY FI RSTNAME) FROM Cust oner GROUP BY LASTNAME

134

HyperS@L Data Access and Change

LASTNAME C2
St eel ARRAY[' John' , ' John', ' Laura',' Robert']
Ki ng ARRAY[' George',' George','Janes','Julia',' Robert',' Robert']

Somrer ARRAY[' Janet ', ' Robert']

SELECT LASTNAME, GROUP_CONCAT(DI STI NCT FI RSTNAME ORDER BY FI RSTNAME DESC SEPARATOR ' * ') FROM
Custonmer GROUP BY LASTNAME

LASTNAME C2

St eel Robert * Laura * John

Ki ng Robert * Julia * Janes * Ceorge
Sonmer Robert * Janet

Other Syntax Elements

sear ch condition

search condition

<search condition> ::= <bool ean val ue expressi on>

Specify acondition that is TRUE, FALSE, or UNKNOWN. A search condition is often a predicate.

PATH

path specification

<pat h specification> ::= PATH <schema nane |ist>

<scherma nane list> ::= <schema nanme> [{ <comma> <schema nane> }...]

Specify an order for searching for a user-defined SQL -invoked routine. Thisis not currently supported by HyperSQL.
routine invocation

routine invocation

<routine invocation> ::= <routine nane> <SQ. argunent |ist>

<routine nane> ::= [<schema nane> <period>] <qualified identifier>

<SQ@Q. argunent list> ::= <left paren> [<SQ argunent> [{ <coma> <SQ
argunent>}...]] <right paren>

<SQ. argunent> ::= <val ue expression> | <target specification>

Invoke an SQL-invoked routine. Examples are given in the SQL-Invoked Routines chapter.
COLLATE

collate clause

<col | ate clause> ::= COLLATE <col |l ati on name>

Specify acollation for acolumn or for an ORDER BY expression. Thiscollation isused for comparing the values of the
columnin different rows. Comparison can happen during the execution of SELECT, UPDATE or DELETE statements,
when a UNIQUE constraint or index is defined on the column, or when the rows are sorted by an ORDER BY clause.

135

HyperS@L Data Access and Change

CONSTRAINT
constraint name definition
<constraint nane definition> ::= CONSTRAI NT <constrai nt nane>

<constraint characteristics> ::= <constraint check tine>[[NOT | DEFERRABLE]
| [NOT] DEFERRABLE [<constraint check tinme>]

<constraint check time> ::= INTIALLY DEFERRED | | N TI ALLY | MVEDI ATE

Specify the name of a constraint and its characteristics. Thisis an optional element of CONSTRAINT definition, not
yet supported by HyperSQL .

Data Access Statements

HyperSQL fully supports all of SQL-92 data access statements, plus most of the additions from SQL:2011. Due to
time constraints, the current version of this Guide does not cover the subject fully. Y ou are advised to consult an SQL
book such asthe O'Rellly title, "SQL and Relational Theory" by C. J. Date.

Database queries are data access statements. The most commonly used data access statement isthe SELECT statement,
but there are other statements that perform asimilar role. Data access statements access tables and return result tables.
The returned result tables are falsely called result sets, as they are not necessarily sets of rows, but multisets of rows.

Result tables are formed by performing thefoll owing operations on base tables and views. These operationsareloosely
based on Relational Algebra

JOIN operations

SET and MULTISET operations

SELECTION

PROJECTION

COMPUTING

COLUMN NAMING

GROUPING and AGGREGATION

SELECTION AFTER GROUPING OR AGGREGATION
SET and MULTISET (COLLECTION) OPERATIONS
ORDERING

SLICING

Conceptually, the operations are performed one by one in the above order if they apply to the given data access
statement. In the example below a simple select statement is made more complex by adding various operations.

CREATE TABLE atable (a INT, b INT, ¢ INT, d INT, e INT, f INT);

/* in the next SELECT, no join is perfornmed and no further operation takes place */

SELECT * FROM at abl e

/* in the next SELECT, selection is performed by the WHERE cl ause, with no further action */
SELECT * FROM atable WHERE a + b = ¢

136

HyperS@L Data Access and Change

/* in the next SELECT, projection is performed after the other operations */

SELECT d, e, f FROMatable WHERE a + b = ¢

/* in the next SELECT, conputation is performed after projection */

SELECT (d + e) / f FROMatable WHERE a + b = ¢c

/* in the next two SELECT statenments, colum nanming is performed in different ways*/
SELECT (a + e) /| f AScalc, f AS div FROM atable WHERE a + b = ¢

SELECT dcol, ecol, fcol FROM atabl e(acol, bcol, ccol, dcol, ecol, fcol) WHERE acol + bcol = ccol
/* in the next SELECT, both grouping and aggregation is performed */

SELECT d, e, SUMf) FROM atable GROUP BY d, e

/* in the next SELECT, selection is performed after grouping and aggregation is performed */
SELECT d, e, SUMf) FROM atable GROUP BY d, e HAVING SUMf) > 10

/* in the next SELECT, a UNION is perfornmed on two selects fromthe sane table */

SELECT d, e, f FROM atable WHERE d = 3 UNION SELECT a, b, c FROM atable WHERE a = 30

/* in the next SELECT, ordering is performed */

SELECT (a + e) /| f AScalc, f AS div FROM atable WHERE a + b = ¢ ORDER BY calc DESC, div NULLS
LAST

/* in the next SELECT, slicing is perforned after ordering */

SELECT * FROM atable WHERE a + b = ¢ ORDER BY a FETCH 5 ROAS ONLY

The following sections discuss various types of tables and operations involved in data access statements.

Select Statement

The SELECT statement itself does not cover all types of dataaccess statements, which may combinemultiple SELECT
statements. The <query speci fi cati on> is the most common data access statement and begins with the
SELECT keyword.

SELECT STATEMENT
select statement (general)

Users generally refer to the SELECT statement when they mean a <query specificati on> or <query
expr essi on>. If astatement begins with SELECT and has no UNION or other set operations, thenitisa<query
speci ficati on>. Otherwiseitisa<query expressi on>.

Table

In data access statements, a table can be a database table (or view) or an ephemeral table formed for the duration of the
guery. Sometypesof tableare<t abl e pri nar y> and can participate in joins without the use of extra parentheses.
The BNF in the Table Primary section below lists different types of <table primary>:

Tables can aso be formed by specifying the values that are contained in them:

<tabl e val ue constructor> ::= VALUES <row val ue expression |ist>
<row val ue expression list> ::= <table row val ue expression> [{ <comma> <t abl e
row val ue expression> }...]

In the example below a table with two rows and 3 columns is constructed out of some values:

| VALUES (12, 14, null), (10, 11, CURRENT_DATE)

When atableis used directly in a UNION or similar operation, the keyword TABLE is used with the name:
<explicit table> ::= TABLE <table or query nanme>

In the examples below, al rows of the two tables are included in the union. The keyword TABLE is used in the first
example. The two examples below are equivalent.

137

HyperS@L Data Access and Change

TABLE at abl e UNI ON TABLE anot hert abl e
SELECT * FROM at abl e UNI ON SELECT * FROM anot hert abl e

Subquery

A subqguery issimply aquery expression in brackets. A query expression isusually acomplete SELECT statement and
isdiscussed intherest of thischapter. A scalar subquery returns one row with one column. A row subguery returns one
row with one or more columns. A table subquery returns zero or more rows with one or more columns. The distinction
between different forms of subguery issyntactic. Different formsare allowed in different contexts. If ascalar subquery
or arow subquery return more than one row, an exception is raised. If ascalar or row subquery returns no row, it is
usually treated as returning a NULL. Depending on the context, this has different consequences.

<scal ar subquery> ::= <subquery>

<row subquery> ::= <subquery>

<tabl e subquery> ::= <subquery>

<subquery> ::= <l eft paren> <query expression> <right paren>

Query Specification

A query specification is a'so known as a SELECT statement. It is the most common form of <deri ved t abl e>
.A<tabl e expressi on>isabasetable, aview or any form of allowed derived table. The SELECT statement
performs projection, naming, computing, or aggregation on the rows of the <t abl e expr essi on>.

<query specification> ::= SELECT [DI STINCT | ALL] <select list> <table
expr essi on>

<select list> ::= <asterisk> | «<select sublist> [{ <comma> <select
sublist>}...]

<sel ect sublist> ::= <derived colum> | <qualified asterisk>

<qual ified asterisk> ::= <asterisked identifier chain> <period> <asterisk>
<asterisked identifier chain> ::= <asterisked identifier> [{ <period>
<asterisked identifier>}...]

<asterisked identifier> ::= <identifier>

<derived colum> ::= <val ue expression> [<as clause>]

<as clause> ::=[AS] <colum nane>

The qualifier DISTINCT or ALL apply to the results of the SELECT statement after al other operations have been
performed. ALL simply returns the rows, while DISTINCT compares the rows and removes the duplicate ones.

Projection is performed by the<sel ect |i st >.

A single<ast er i sk> means all columns of the <t abl e expr essi on> areincluded, in the same order as they
appear inthe <t abl e expr essi on>. An asterisk qualified by atable name means al the columns of the qualifier
table name are included. If an unqualified asterisk is used, then no other items are allowed inthe<sel ect |i st >.
When the <t abl e expr essi on> isthe direct result of NATURAL or USING joins, the use of <ast eri sk>
includes the columns used for the join before the other columns. A qualified asterisk does not cover the join columns.

138

HyperS@L Data Access and Change

A derived column is a <val ue expressi on>, optionally named with the <as cl ause>. A <val ue
expr essi on> can be many things. Common typesinclude: the name of acolumninthe<t abl e expr essi on>;
an expression based on different columns or constant values; a function call; an aggregate function; a CASE WHEN
expression.

Table Expression

A table expression is part of the SELECT statement and consists of the FROM clause with optional other clauses that
performs selection (of rows) and grouping from the table(s) in the FROM clause.

<tabl e expression> ::= <from clause> [<where clause>] [<group by clause>]
[<having cl ause>]

<fromclause> ::= FROM <table reference> [{ <comm> <table reference> }...]
<table reference> ::= <table primary> | <joined table>

<table prinmry> = <table or query nanme> [<query system tinme period
specification>] [[AS] <correlation name> [<left paren> <derived colum
list> <right paren>]]

| <derived table> [AS] <correlation nanme> [<left paren> <derived colum
list> <right paren>]

| <lateral derived table> [AS] <correlation name> [<left paren> <derived
colum list> <right paren>]

| <collection derived table> [AS] <correlation name> [<left paren> <derived
colum list> <right paren>]

| <table function derived table> [AS] <correlation nane> [<left paren>
<derived colum list> <right paren>]

| <parenthesized joined table>[AS] <correlation nane> [<left paren> <derived
colum list> <right paren>]

<where cl ause> ::= WHERE <bool ean val ue expressi on>

<group by cl ause> ::= GROUP BY [<set quantifier>] <grouping elenment>[{ <coma>
<grouping element> }...]

<havi ng cl ause> ::= HAVI NG <bool ean val ue expressi on>

<query system tine period specification> ::= FOR SYSTEMTIME AS OF <point in
time 1>

| FOR SYSTEM TI ME BETWEEN [SYMMETRIC] <point in tinme 1> AND <point in tine 2>
| FOR SYSTEM TIME FROM <point in time 1> TO <point in tine 2>

The <f rom cl ause> contains one or more <t abl e r ef er ence> separated by commas. A table reference is
often atable or view name or ajoined table.

The<wher e cl ause> filtersthe rows of thetable in the <from clause> and removes the rows for which the search
condition is not TRUE.

Table primary refers to different forms of table reference in the FROM clause.

139

HyperS@L Data Access and Change

Table or Query Name

The simplest form of reference is simply a name. This is the name of a table, a view, a transition table in a trigger
definition, or a query name specified in the WITH clause of a query expression.

<tabl e or query nane> :.= <table nane> | <transition table nane> | <query nane>

System Time Period

The<query system tine period specification> canbe used after the name of a system-versioned
tableto query historic datain the table. Without this clause, only the current rows of the table are returned and historic
rows areignored. The first example below shows alist of customers as of ayear ago. The second example also shows
any changes made to the email column over the previous year.

SELECT firstnane, |astnane, ermail FROM custoner FOR SYSTEM TI ME AS OF CURRENT_TI MESTAMP - 1 YEAR

SELECT DI STINCT firstnane, |astnane, email FROM custoner FOR SYSTEM TI ME FROM CURRENT_TI MESTAMP -
2 YEAR TO CURRENT_TI MESTAMP - 1 YEAR

Derived Table
derived table

A query expression that is enclosed in parentheses and returns from zero to many rowsisa<t abl e subquery>.
Ina<derived tabl e> the query expression is self contained and cannot reference the columns of other table
references. Thisisthetraditional and most common form of use of a<t abl e subquer y>.

<derived table> ::= <table subquery>

Lateral
LATERAL

When the word LATERAL isused beforea<t abl e subquer y>, it means the query expression can reference the
columns of other table references that go before it.

<l ateral derived table> ::= LATERAL <tabl e subquery>

Theuseof <l at eral derived t abl e>completely transformsthe way a query iswritten. For example, the two
gueries below are equivalent, but with different forms. The query with LATERAL isevaluated separately for each row
of thefirst table that satisfiesthe WHERE condition. The example below usesthe tables that are created and popul ated
in DatabaseM anagerSwing with the "Insert test data’ menu option. The first query uses a scalar subquery to compute
the sum of invoice values for each customer. The second query is equivalent and uses ajoin with aLATERAL table.

SELECT firstnanme, |astnane, (SELECT SUMtotal) FROM invoice WHERE customerid = custoner.id) s
FROM cust oner

SELECT firstnanme, |astnane, a.c FROM customer, LATERAL(SELECT SUMtotal) FROM i nvoi ce WHERE
custonmerid = custoner.id) a (c)

UNNEST
UNNEST

UNNEST issimilar to LATERAL, but instead of a query expression, one or more expressions that return an array
are used. These expressions are converted into a table which has one column for each expression and contains the

140

HyperS@L Data Access and Change

elements of the array. If WITH ORDINALITY is used, an extra column that contains the index of each element is
added to this table. The number of rows in the table equals the length of the largest arrays. The smaller arrays are
padded with NULL values. If an <array value expression> evaluatesto NULL, an empty array isused initsplace. The
array expression can contain references to any column of the table references preceding the current table reference.

<col l ection derived table> ::= UNNEST <l eft paren> <array val ue expressi on>,
<right paren> [WTH ORDI NALI TY]

The<array val ue expressi on> can bethe result of afunction call. If the arguments of the function call are
values from the tables on the I eft of the UNNEST, then the function is called for each row of table.

In the first example below, UNNEST is used with the built in-function SEQUENCE_ARRAY to build a table
containing dates for the last seven days and their ordinal position. In the second example, a select statement returns
costsfor thelast seven days . In the third example, the WITH clause turns the two sel ects into named subqueries which
areused in a SELECT statement that usesa LEFT join.

SELECT * FROM UNNEST(SEQUENCE_ARRAY(CURRENT DATE - 7 DAY, CURRENT DATE - 1 DAY, 1 DAY)) W TH
ORDI NALI TY AS T(D, 1)

D |
2010-07- 25
2010-07- 26
2010-07- 27
2010-07-28
2010-07-29
2010-07-30
2010-07-31

~NOoO O~ WN

CREATE TABLE expenses (item date DATE, cost DECI MAL(8, 2))
SELECT itemdate, SUMcost) AS s FROM expenses WHERE item date >= CURRENT_DATE - 7 DAY GROUP BY
itemdate

| TEM DATE S
2010-07-27 100.12
2010-07-29 50. 45

W TH costs(i_d, s) AS (SELECT itemdate, SUMcost) AS s FROM expenses WHERE item date >=
CURRENT_DATE - 7 DAY GROUP BY item date)

dates(d, i) AS (SELECT * FROM UNNEST(SEQUENCE_ARRAY(CURRENT_DATE - 7 DAY, CURRENT_DATE - 1 DAY,
1 DAY)) W TH ORDI NALI TY)

SELECT i, d, s FROM dates LEFT OUTER JO N costs ON dates.d = costs.i_d

2010-07-25 (nul 1)
2010-07-26 (null)
2010- 07- 27 100. 12
2010-07-28 (nul 1)
2010- 07-29 50. 45
2010-07-30 (nul 1)
2010-07-31 (nul 1)

~NOoO O~ WN

Table Function Derived Table
Table Function Derived Table

When TABLE is used in this context, the<col | ecti on val ue expressi on> must be the result of afunction
call to abuilt-in function or user-defined function that returns an array or atable. When the function returns an array,

141

HyperS@L Data Access and Change

thisarray is converted into atable, similar to the way UNNEST operates. When the function returns a table, the result
isaMULTISET andisused asis.

<table function derived table> ::= TABLE <left paren> <collection value
expressi on> <right paren>

Parenthesized Joined Table

A parenthesized joined table is simply ajoined table contained in parentheses. Joined tables are discussed below.

<parenthesized joined table> ::= <left paren> <parenthesized joined table>
<right paren> | <left paren> <joined table> <right paren>

Column Name List
column name list

The column list that is specified for the table reference must contain names that are unique within the list

<derived colum list> ::= <colum nane list>
<colum nane list> ::= <colum nanme> [{ <comma> <col um nane> }...]
Joined Table

Joins are operators with two table as the operands, resulting in athird table, called joined table. All join operators are
evaluated | eft to right, therefore, with multiplejoins, thetableresulting from the first join operator becomes an operand
of the next join operator. Parentheses can be used to group sequences of joined tables and change the eval uation order.
So if more than two tables are joined together with join operators, the end result is aso a joined table. There are
different types of join, each producing the result table in a different way.

<joined table> ::= <cross join> | <qualified join>| <natural join>
<cross join> ::= <table reference> CROSS JO N <table factor>
<qualified join>::= <table reference>| [<join type>] JON <table reference>

<join specification>

<natural join>::= <table reference> NATURAL [<join type>] JO N <table factor>
<join specification> ::= <join condition> | <naned colums joi n>

<join condition> ::= ON <search condition>

<nanmed colums join> ::= USING <l eft paren> <join columm |ist> <right paren>
<join type> ::= INNER | <outer join type> [OUTER]

<outer join type> ::= LEFT | RIGHT | FULL

<join colum list> ::= <columm nane |ist>

CROSSJOIN

The simplest form of join is CROSS JOIN. The CROSS JOIN of two tablesis atable that has all the columns of the
first table, followed by all the columns of the second table, in the original order. Each row of thefirst tableis combined

142

HyperS@L Data Access and Change

with each row of the second table to fill the rows of the new table. If the rows of each table form a set, then the rows
of the CROSS JOIN table form the Cartesian product of the rows of the two table operands.

Conditions are not allowed as part of acrossjoin, whichissimply A CROSS JO N B. Any conditionsinaWHERE
clause are later applied to the table resulting from the crossjoin.

Tablesin the FROM CLAUSE separated with commas, are equivalent to cross joins between the tables. Two joined
tables separated with acomma, such as A, B, isequivalent to (A) CROSS JOIN (B), which means the joined tables
A and B are populated separately before they are joined.

CROSS JOIN isnot is not generally very useful, asit returns large result tables unless WHERE conditions are used.
UNION JOIN

The UNION JOIN has limited use in queries. The result table has the same columns as that of CROSS JOIN. Each
row of the first table is extended to the right with nulls and added to the new table. Each row of the second table is
extended to the left with nulls and added to the new table. The UNION JOIN isexpressed asA UNION JO N B.
This should not be confused with A UNI ON B, which is a set operation. Union join is for special applications and
is not commonly used.

JOIN ... ON

The condition join is similar to CROSS JOIN, but a condition is tested for each row of the new table and the row is
created only if the condition istrue. Thisform of joinisexpressedasA JO N B ON (<search condition>).

Equijoinisacondition join in which the search condition is an equality condition between on or more pairs of columns
from the two table. Equijoin is the most commonly used type of join.

‘SELECT a.*, b.* FROMa INNER JON b ON a.col _one = b.col _two

JOIN ... USING
NATURAL JOIN

Joins with USING or NATURAL keywords are similar to an equijoin but they cannot be replaced simply with an
equijoin. The new tableisformed with the specified or implied shared columns of the two tables, followed by the rest
of the columns from each table. In NATURAL JOIN, the shared columns are all the column pairs that have the same
name in the first and second table. In JOIN USING, only columns names that are specified by the USING clause are
shared. The joins are expressed as A NATURAL JO N B,and A JON B USING (<coma separated
colum nane |ist>).

The columns of the joined table are formed by the following procedures: In JOIN ... USING the shared columns are
added to the joined table in the same order as they appear in the column name list. In NATURAL JOIN the shared
columns are added to the joined table in the same order as they appear in the first table. In both forms of join, the non-
shared columns of the first table are added in the order they appear in the first table, finally the non-shared columns
of the second table are added in the order they appear in the second table.

The type of each shared column of the joined table is based on the type of the columnsin the original tables. If the
original typesare not exactly the same, thetype of the shared column isformed by type aggregation. Type aggregations
selects a type that can represent values of both aggregated types. Simple type aggregation picks one of the types.
For example, SMALLINT and INTEGER, resultsin INTEGER, or VARCHAR(10) and VARCHAR(20) results in
VARCHAR(20). More complex type aggregation inherits properties from both types. For example DECIMAL(8) and
DECIMAL (6,2) resultsin DECIMAL (8,2).

In the examples below, the rows are joined exactly the same way, but the first query containsa.col_two and b.col_two
together with all the rest of the columns of both tables, while the second query returns only one copy of col_two.

143

HyperS@L

Data Access and Change

SELECT * FROM a | NNER JO
SELECT * FROM a | NNER JO

N b
N b

ON a.col _two = b.col _two

USI NG (col _two)

OUTER JOIN

LEFT, RIGHT and FULL OUTER JOIN

The three qualifiers can be added to all types of JOIN except CROSS JOIN and UNION JOIN. First the new tableis
populated with the rows from the original join. If LEFT is specified, all the rows from thefirst table that did not make
it into the new table are extended to the right with nulls and added to the table. If RIGHT is specified, all the rows
from the second table that did not make it into the new table are extended to the left with nulls and added to the table.
If FULL is specified, the addition of |eftover rowsis performed from both the first and the second table. These forms
are expressed by prefixing the join specification with the given keyword. For example, A LEFT OUTER JO N B
ON (<search condition>) or A NATURAL FULL QUTER JO N Bor A FULL OQUTER JO N B USI NG

(<coma separated colum nane |ist>).

‘ SELECT a.*, b.* FROM a LEFT QUTER JO N b ON a.col _one = b.col _two

Selection

Despite the name, selection has nothing to do with the list of columns in a SELECT statement. In fact, it refers to
the search condition used to limit the rows that from a result table (selection of rows, not columns). In SQL, ssimple
selection is expressed with aWHERE condition appended to asingletable or ajoined table. In some cases, thismethod
of selection isthe only method available; for example in DELETE and UPDATE statements. But when it is possible
to perform the selection with join conditions, thisisthe better method, asit resultsin aclearer expression of the query.

Projection

Projection is selection of the columns from a simple or joined table to form a result table. Explicit projection is
performed in the SELECT statement by specifying the select column list. Some form of projection is also performed
in JOIN ... USING and NATURAL JOIN.

The joined table has columns that are formed according to the rules mentioned above. But in many cases, not al the
columns are necessary for the intended operation. If the statement is in the form, SELECT * FROM <joined table>,
then al the columns of <joined table> are returned. But normally, the columns to be returned are specified after the
SELECT keyword, separated from each other with commas.

Computed Columns

Intheselect list, itispossibleto use expressionsthat reference any columnsof <joined table>. Each of these expressions
forms a computed column. It is computed for each row of the result table, using the values of the columns of the

<joined table> for that row.

Naming

Naming is used to hide the original names of tables or table columns and to replace them with new namesin the scope

of the query. Naming is also used for defining names for computed columns.

Without explicit naming, the name of acolumn isapredefined name. If the columnisacolumn of atable, or isanamed
parameter, the name is of the table column or parameter is used. Otherwise it is generated by the database engine.
HyperSQL generates column names such as C1, C2, etc. As generated naming is implementation defined according
to the SQL Standard, it is better to explicitly name the computed and derived columns in your applications.

144

HyperS@L Data Access and Change

Namingin Joined Table

Naming is performed by adding a new name after atable's real name and by adding alist of column names after the
new table name. Both table naming and column naming are optional, but table naming is required for column naming.
The expression A [AS] X (<comma separated columm nanme |ist>) meanstable A isused in the
guery expression astable X and its columns are named asin the given list. The original name A, or itsoriginal column
names, are not visible in the scope of the query. The BNF is given below. The<corr el ati on nane> can bethe
same or different from the name of the table. The<deri ved col umtm |i st >isacommaseparated list of column
names. The degree of thislist must be equal to the degree of the table. The column namesin the list must be distinct.
They can be the same or different from the names of the table's columns.

<tabl e or query name>|[[AS] <correlation nane> [<left paren> <derived col um
[ist> <right paren>1]]

In the examples below, the columns of the original tables are named (a, b, ¢, d, g, f). The two queries are equivalent.
In the second query, the table and its columns are renamed and the new names are used in the WHERE clauses:

CREATE TABLE atable (a INT, b INT, ¢ INT, d INT, e INT, f INT);
SELECT d, e, f FROMatable WHERE a + b = ¢
SELECT x, y, z FROMatable ASt (u, v, w, X, ¥, z) WHEREU +Vv = w

Namingin Select List

Naming in the SELECT list logically takes place after naming in the joined table. The new names for columns are
not visible in the immediate query expression or query expression. They become visible in the ORDER BY clause
and in the result table that is returned to the user. Or if the query expression is used as a derived table in an enclosing
query expression.

In the example below, the query is on the same table but with column renaming in the Select list. The new names are
used in the ORDER BY clause:

SELECT x + y AS xysum y + z AS yzsum FROM atable ASt (u, v, w, X, y, z) WHERE u + v = w ORDER
BY xysum yzsum

If the names xysumor yzsumare not used, the computed columns cannot be referenced in the ORDER BY list.
Name Resolution

In ajoined table, if a column name appears in tables on both sides then any reference to the name must use the table
name in order to specify which table is being referred to.

Grouping Operations
Grouping Operations

Grouping resultsin the elimination of duplicate rows. A grouping operation is performed after the operations di scussed
above. A simple form of grouping is performed by the use of DISTINCT after SELECT. This eliminates al the
duplicate rows (rows that have the same value in each of their columns when compared to another row). The other
form of grouping is performed with the GROUP BY clause. Thisform is usually used together with aggregation.

GROUP BY
<group by cl ause> ::= GROUP BY [<set quantifier>] <grouping elenment>[{ <coma>
<grouping element> }...]

145

HyperS@L Data Access and Change

<grouping element> ::= <ordinary grouping set> | <rollup list> | <cube list> |
<groupi ng sets specification> | <enpty grouping set>

<ordi nary groupi ng set> ::= <groupi ng colum reference> | <left paren> <grouping
colum reference list> <right paren>

<groupi ng columm reference list> ::= <grouping colum reference> [{ <conma>
<groupi ng colum reference> }...]

<groupi ng colum reference> ::= <colum reference> [<collate clause>]
<rollup list>::= ROLLUP <l eft paren> <ordi nary groupi ng set |ist> <right paren>

<ordi nary grouping set list> ::= <ordinary grouping set> [{ <comma> <ordi nary
grouping set> }...]

<cube list> ::= CUBE <l eft paren> <ordinary grouping set list> <right paren>
<groupi ng sets specification>::= GROUPI NG SETS <l eft paren> <groupi ng set |list>
<right paren>

<grouping set list> ::= <grouping set> [{ <comma> <grouping set> }...]
<grouping set> ::= <ordinary grouping set> | <rollup list> | <cube list> |

<groupi ng sets specification> | <enpty grouping set>
<enpty grouping set> ::= <left paren> <right paren>

An ordinary <group by cl ause> is acomma separated list of columns of the table formed by the <f r om
cl ause> or expressions based on the columns. Thisis the most common usage and can be described as GROUP BY
<colum reference> [{ <comma> <groupi ng colum reference> }...].

When a<group by clause> isused, only the columns used in the <gr oup by cl ause> or expressions
used there, can beused inthe<sel ect | i st >, together with any <aggr egat e f unct i on> on other columns.
In other words, the column names or expressions listed in the GROUP BY clause dictate what can be used in the
<sel ect 1i st>. After the rows of the table formed by the <f r om cl ause> and the <wher e cl ause> are
finalised, the grouping operation groups together the rows that have the same values in the columns of the <gr oup
by cl ause>. Thenany <aggregate functi on>inthe<sel ect |i st > isperformed on each group, and
for each group, arow isformed that contains the values of the columns of the<gr oup by cl ause> and the values
returned from each <aggr egat e functi on>.

When the type of <col umm r ef er ence> is character string, the <col | at e cl ause> can be used to specify
the collation used for grouping the rows. For example, a collation that is not case sensitive can be used, or acollation
for adifferent language than the original collation of the column.

The first example below shows a simple GROUP BY, while in the second example, has aHAVING condition.

CREATE TABLE REVENUE(CHANNEL VARCHAR(20), YEAR | NTEGER, COUNTRY VARCHAR(2), PROVI NCE
VARCHAR(20), SALES | NTEGER);

SELECT CHANNEL, YEAR COUNTRY, SUM SALES) FROM REVENUE GROUP BY CHANNEL, YEAR, COUNTRY;
SELECT CHANNEL, YEAR COUNTRY, SUM SALES) FROM REVENUE GROUP BY CHANNEL, YEAR, COUNTRY HAVI NG
SUM SALES) > 50000;

An extended <gr oup by cl ause> may comprise elements such as GROUPING SETS, ROLLUP, CUBE and
the empty grouping set. These syntax elements are expanded and then ssimplified into alist of parenthesized column
elements, which result in multiple grouping operations. HyperSQL version 2.5.1 supports all the syntax listed above.
The example below uses ROLLUP for grouping.

146

HyperS@L Data Access and Change

SELECT CHANNEL, YEAR, COUNTRY, SUM SALES) AS S
FROM REVENUE
GROUP BY ROLLUP(CHANNEL, YEAR, COUNTRY);

The ROLLUP istranslated into 4 groupings: (channel, year, country), (channel, year), (channel), (). Theresult set will
contain the rows as grouped by (channel, year, country), then rows as grouped by (channel, year) with the country
column replaced by null, then rows as grouped by (channel) only, with year and country columns replaced by null,
then asingle row representing the () empty group with all three columns replaced by null.

CHANNEL YEAR COUNTRY S
| NTERNET 2009 GB 25000

| NTERNET 2009 US 275000
| NTERNET 2010 GB 45000

| NTERNET 2010 US 500000
DI RECT SALES 2009 GB 162000
DI RECT SALES 2009 US 1602500
DI RECT SALES 2010 GB 181000
DI RECT SALES 2010 US 1833000
| NTERNET 2009 (null) 300000
| NTERNET 2010 (null) 545000
DI RECT SALES 2009 (null) 1764500
DI RECT SALES 2010 (null) 2014000
| NTERNET (null) (null) 845000
DI RECT SALES (null) (null) 3778500

)

(null) (null) (null 4623500

If CUBE is used instead of ROLLUP, other permutations of the three columns are added to those produced by
ROLLUP. These include (channel, country), (year, country), (year) and (country).

The optional <set quantifier> is either ALL or DISTINCT and defaults to ALL. When GROUPING SETS is used
and multiple sets are specified and some duplicate groups are created as a result, use of DISTINCT eliminates the
duplicate groups.

Note any ordering of the rows returned by GROUP BY in incidental. Y ou need to use ORDER BY for the ordering
you require.

HAVING

A <havi ng cl ause> filtersthe rows of the table that is formed after applying the<gr oup by cl ause> using
its search condition. The search condition must be an expression based on the expressions in the GROUP BY list or
the aggregate functions used.

DISTINCT
SELECT DI STI NCT

When the keyword DISTINCT is used after SELECT, it works as a shortcut replacement for a smple GROUP BY
clause. The expressionsin the SELECT list are used directly asthe<gr oup by cl ause>. Thefollowing examples
of SELECT DISTINCT and SELECT with GROUP BY are equivalent.

SELECT DISTINCT d, e + f FROM atable WHERE a + b = ¢
SELECT d, e + f FROM atable WHERE a + b = ¢ GROUP BY d, e + f

Aggregation

Aggregation is an operation that computes asingle value from the values of acolumn over several rows. The operation
is performed with an aggregate function. The simplest form of aggregation is counting, performed by the COUNT
function.

147

HyperS@L Data Access and Change

Other common aggregate functions return the maximum, minimum and average value among the values in different
rows. Aggregate functions were discussed earlier in this chapter.

Set Operations

Set and Multiset Operations

Whilejoin operations generally result in laterally expanded tables, SET and COLLECTION operations are performed
on two tables that have the same degree and result in a table of the same degree. The SET operations are UNION,
INTERSECT and EXCEPT (difference). When each of these operations is performed on two tables, the collection
of rows in each table and in the result is reduced to a set of rows, by eliminating duplicates. The set operations are
then performed on the two tables, resulting in the new table which itself is a set of rows. Collection operations are
similar but the tables are not reduced to sets before or after the operation and the result is not necessarily a set, but
a collection of rows.

The set operationsontwo tablesA and B are: A UNI ON [DI STI NCT] B, A | NTERSECT [DI STI NCT] BandA
EXCEPT [DI STI NCT] B. Theresult tableisformed in the following way: The UNION operation adds al the rows
from A and B into the new table, but avoids copying duplicate rows. The INTERSECT operation copies only those
rows from each table that also exist in the other table, but avoids copying duplicate rows. The EXCEPT operation
copies those rows from the first table which do not exist in the second table, but avoids copying duplicate rows.

The collection operations are similar to the set operations, but can return duplicate rows. They are: A UNI ON ALL
B, A | NTERSECT ALL Band A EXCEPT ALL B. The UNION ALL operation adds al the rows from A and
B into the new table. The INTERSECT operation copies only those rows from each table that also exist in the other
table. If n copies of arows existsin one table, and m copiesin the other table, the number of copiesin the result table
is the smaller of n and m. The EXCEPT operation copies those rows from the first table which do not exist in the
second table. If n copies of arow exist in the first table and m copies in the second table the number of copiesin the
result tableis n-m, or if n <m, then zero.

With Clause and Recursive Queries

The optional WITH clause can be used in a query expression. The WITH clause lists one or more hamed ephemeral
tables that can be referenced in the query expression body. The ephemeral tables are created and populated before
the rest of the query expression is executed. Their contents do not change during the execution of the <query
expressi on body>.

<with clause> ::= WTH [RECURSIVE] <with list>
<with list>::= <with list elenent> [{ <comma> <with list elenent> }...]
<with list elenent> ::= <query name> [<left paren> <with columm Ilist> <right

paren>] AS <l eft paren> <query expression> <right paren>
<with colum list> ::= <colum nanme |ist>

An example of the use of the WITH clause is given above under UNNEST. The <query expressi on> inthe
WITH clauseis evaluated once and its result table can be referenced in the body of the main <query expr essi on
body> using the specified <query name>.

The RECURSIVE keyword changes the way the elements of the <wi t h | i st > are interpreted. The <query
expr essi on> containedinthe<wi t h |i st el ement > must be the UNION or UNION ALL of two <query
expression body> elements (simple VALUES or SELECT statements). The left element of the UNION is evaluated
first and its result becomes the result of the<wi t h | i st el enent >. After this step, the current result of the
<with list element> isreferenced in the right element (a SELECT statement) of the UNION, the UNION is performed
between the result and previous result of the<wi t h | i st el enent >, which is enlarged by this operation. The

148

HyperS@L Data Access and Change

UNION operation is performed again and again, until the result of the<wi t h i st el enent > stops changing.
Theresult of the<with |ist el ement > isnow complete and is later used in the execution of the <query
expr essi on body>. When RECURSIVE isused, the<wi t h col um | i st > must be defined.

HyperSQL limits recursion to 265 rounds. If thisis exceeded, an error israised.

A trivial example of arecursive query isgiven below. Notethe first column GEN. For example, if each row of thetable
represents amember of afamily of dogs, together with its parent, the first column of the result indicates the calcul ated
generation of each dog, ranging from first to fourth generation.

CREATE TABLE pptree (pid INT, id INT);
I NSERT | NTO pptree VALUES (NULL, 1) ,(1,2), (1,3),(2,4),(4,5),(3,6),(3,7);

W TH RECURSI VE tree (gen, par, child) AS (
VALUES(1, CAST(null as int), 1)
UNI ON
SELECT gen + 1, pid, id FROM pptree, tree WHERE pid = child
) SELECT * FROM tree;

if recursive queries become complex, they also become very difficult to develop and debug. HyperSQL provides an
alternativeto thiswith user-defined SQL functionswhich return tables. Functions can perform any complex, repetitive
task with better control, using loops, variables and, if necessary, recursion.

Query Expression

A query expression consists of an optional WITH clause and a query expression body. The optional WITH clauselists
one or more named ephemeral tables that can be referenced, just like the database tablesin the query expression body.

<query expression> ::= [<with clause>] <query expression body>

A query expression body refers to a table formed by using UNION and other set operations. The query expression
body is evaluated from left to right and the INTERSECT operator has precedence over the UNION and EXCEPT
operators. A simplified BNF is given below:

<query expression body> ::= <query ternm> | <query expression body> UN ON |
EXCEPT [ALL | DISTINCT] [<corresponding spec>] <query ternp

<query ternmr ::= <query primary> | <query term> |INTERSECT [ALL | DI STINCT]
[<corresponding spec>] <query ternp

<query primary>::=<sinple table>| <left paren> <query expressi on body> [<order
by clause>] [<result offset clause>] [<fetch first clause>] <right paren>

<sinpl e tabl e> ::= <query specification>| <table value constructor>| <explicit
tabl e> <explicit table> ::= TABLE <table or query nane>
<correspondi ng spec> ::= CORRESPONDING [BY <left paren> <colum nanme |ist>

<ri ght paren>]

149

HyperS@L Data Access and Change

A <query ternt and a<query primary> can be a SELECT statement, an <explicit table> ora
<t abl e val ue constructor>.

The CORRESPONDING clause is optional. If it is not specified, then the <query ter > and the <query
pri mar y> must have the same number of columns. If CORRESPONDING is specified, the two sides need not have
the same number of columns. If no column list is used with CORRESPONDING, then al the column names that are
common in the tables on two sides are used in the order in which they appear in thefirst table. If acolumnslist is used,
it allows you to select only some columns of the tables on the left and right side to create the new table. In the example
below the columns named u and v from the two SELECT statements are used to create the UNION table.

‘ SELECT * FROM at abl e UNI ON CORRESPONDI NG BY (u, v) SELECT * FROM anot hert abl e ‘

The type of each column of the query expression is determined by combining the types of the corresponding columns
from the two participating tables.

Ordering

When the rows of the result table have been formed, it is possible to specify the order in which they are returned to the
user. The ORDER BY clause is used to specify the columns used for ordering, and whether ascending or descending
ordering is used. It can also specify whether NULL values are returned first or last.

SELECT x + y AS xysum y + z AS yzsum FROM atable ASt (u, v, w, X, y, z) WHERE u + v = w ORDER
BY xysum NULLS LAST, yzsum NULLS FI RST

The ORDER BY clause specifiesone or more<val ue expressi ons>. Thelist of rowsis sorted according to the
first<val ue expr essi on>. When somerows are sorted equal then they are sorted according to the next <val ue
expr essi on> and so on.

<order by clause> ::= ORDER BY <sort specification> [{ <comra> <sort
specification> }...]
<sort specification> ::= <value expression> [<collate clause>] [ASC | DESC]

[NULLS FIRST | NULLS LAST]

The defaults are ASC and NULLS FIRST. Two database properties SQL NULLS FIRST and SQL NULLS ORDER
can be modified to change the default behaviour.

A collationisused for columnsof an ORDERBY expressionthat are of thetype CHAR or VARCHAR. Ifa<col | at e
cl ause> isnot specified then the collation of the column, or the default collation of the database is used.

The default collation for a database is ASCII, with lowercase letters sorted after all uppercase letters. The example
below shows the effect of collation on an ordered list.

-- default collation collation for the database is ASClI
SELECT id, |astnane FROM custoner ORDER BY | ast nane
| D LASTNANMVE

-- a language collation is used, it treats king and King as adjacent entries
SELECT id, |astnane FROM custoner ORDER BY | ast nane COLLATE "Engli sh"
| D LASTNAMVE

150

HyperS@L Data Access and Change

‘35 Wi te ‘

Intheaboveexample, if the LASTNAME columnisitsalf defined in thetabledefinitionwith COLLATE " Engl i sh",
then the COLLATE clause is not necessary in the ORDER BY expression.

An ORDER BY operation can sometimes be optimised by the engine when it can use the same index for accessing the
table data and ordering. Optimisation can happen both with DESC + NULLS LAST and ASC + NULLS FIRST.

sort specification list
sort specification list

<sort specification list> ::= <value expression> [ASC | DESC] [NULLS FIRST |
NULLS LAST]

Specify a sort order. A sort operation is performed on the result of a <query expressi on> or <query
speci fication> and sorts the result according to one or more <val ue expressi on>. The <val ue
expressi on> is usualy a single column of the result, but in some cases it can be a column of the <t abl e
expr essi on> that is not used in the select list. The default is ASC and NULLS FIRST.

Slicing

A different form of limiting the rows can be performed on the result table after it has been formed according to al the
other operations (selection, grouping, ordering etc.). Thisis specified by the FETCH ... ROWS and OFFSET clauses
of a SELECT statement. In this form, the specified OFFSET rows are removed from start of the table, then up to the
specified FETCH rows are kept and the rest of the rows are discarded.

<result offset clause> ::= OFFSET <offset row count> { ROWN| RO\5 }

<fetch first clause> ::= FETCH { FIRST | NEXT } [<fetch first row count>]
{ RONW| ROAS } ONLY [USI NG I NDEX]

<limt clause> ::= LIMT <fetch first row count> [USING | NDEX]

A dlicing operation takes the result set that has been already processed and ordered. It then discards the specified
number of rows from the start of the result set and returns the specified number of rows after the discarded rows. The
<offset row count> and <fetch first row count> can be constants, dynamic variables, routine parameters, or routine
variables. The type of the constants must be INTEGER.

SELECT a, b FROM atable WHERE d < 5 ORDER BY absum OFFSET 3 FETCH 2 ROA5 ONLY
SELECT a, b FROM atable WHERE d < 5 ORDER BY absum OFFSET 3 LIMT 2 /* alternative keyword */

When the FETCH keyword is used, the specified number of rows must be at least 1, otherwise an error is returned.
This behaviour is consistent with the SQL Standard. When the LIMIT keyword is used, the specified number of rows
can be zero, which means return al rows (no LIMIT). In MySQL and PostgreSQL syntax modes, zero limit means
no rows (empty result).

If there is an index on all the columns specified in the ORDER BY clauseg, it is normally used for slicing. In some
gueries, an index on another column may take precedence because it is used to process the WHERE condition. It is
possible to add USI NG | NDEX to the end of the slicing clause to force the use of the index for ordering and dlicing,
instead of the index for the WHERE condition.

Indexes Used in SELECT Statements

A query expression, for example a SELECT statement, uses indexes for efficient dataretrieval. The EXPLAIN PLAN
statement lists the indexes used, together with other useful information about the query.

151

HyperS@L Data Access and Change

EXPLAIN PLAN
explain plan
<explain plan> ::= EXPLAIN PLAN FOR <query expressi on>

For example, EXPLAI N PLAN FOR SELECT * FROM REVENUE WHERE COUNTRY = ' WK
Data Change Statements

Delete Statement

DELETE FROM
delete statement: searched

<del ete statenent: searched> ::= DELETE FROM<target table>[[AS] <correl ation
nane>] [WHERE <search condition>][LIMT <fetch first row count>]

Deleterows of atable. The search conditionisa<bool ean val ue expr essi on> that isevaluated for each row
of the table. If the condition is true, the row is deleted. If the condition is not specified, al the rows of the table are
deleted. In fact, animplicit SELECT isperformedin theform of SELECT * FROM <t arget tabl e> [WHERE
<search condi ti on>] and the selected rows are deleted. When used in JDBC, the number of rows returned by
theimplicit SELECT isreturned as the update count.

If there are FOREIGN KEY constraints on other tables that reference the subject table, and the FOREIGN KEY
constraints have referential actions, then rows from those other tablesthat reference the del eted rows are either del eted,
or updated, according to the specified referential actions.

The LIMIT clause, or dternatively the ROWNUM() function in the WHERE clause, can be used to limit the number
of rows that are deleted. Thisis useful when a very large number of rows needs to be deleted. In this situation, you
can perform the operation is chunks and commit after each chunk to reduce memory usage and the total time of the
operation.

In the second example below the rows that have the maximum value for column A are deleted;

DELETE FROM T WHERE C > 5
DELETE FROM T AS TT WHERE TT. A = (SELECT MAX(A) FROM T)

Truncate Statement

TRUNCATE TABLE

truncate table statement

<truncate tabl e statenment> ::= TRUNCATE TABLE <target table> [<identity col um
restart option>] [<truncate options>]

<identity colum restart option> ::= CONTINUE | DENTITY | RESTART | DENTI TY
<truncate options> ::= AND COWM T [NO CHECK]

<truncate table versioning statenent> ::= TRUNCATE TABLE <target table>

VERSI ONI NG TO { TI MESTAM® YYYY- MV DD HH MM SS' | CURRENT_TI MESTAMP }

152

HyperS@L Data Access and Change

Delete all rows of a table without firing its triggers. This statement can only be used on base tables (not views). If
the table is referenced in a FOREIGN KEY constraint defined on another table, the statement causes an exception.
Triggers defined on the table are not executed with this statement. The default for <i dentity col um restart
opt i on>isCONTI NUE | DENTI TY. This means no change to the IDENTITY sequence of the table. If RESTART
| DENTI TY is specified, then the sequence isreset to its start value.

TRUNCATE isfaster than ordinary DELETE. The TRUNCATE statement isan SQL Standard data change statement;
thereforeit is performed under transaction control and can be rolled back if the connection is not in the auto-commit
mode.

HyperSQL aso supports the optional AND COMMIT and NO CHECK options. If AND COMMIT is used, then
the transaction is committed with the execution of the TRUNCATE statement. The action cannot be rolled back. If
the additional NO CHECK option is also specified, then the TRUNCATE statement is executed even if the table is
referenced in a FOREIGN KEY constraint defined on another, non-empty table. This form of TRUNCATE is faster
than the default form and does not use much memory.

The<truncat e tabl e versi oni ng st at enent > isfor removing old history rows from a system-versioned
table. All history rows that expired before the given timestamp are removed. No current row is removed.

TRUNCATE SCHEMA
truncate schema statement

<truncate schema statenent> ::= TRUNCATE SCHEMA <target schema> [<identity
colum restart option>] AND COM T [NO CHECK]

Performsthe equivalent of a TRUNCATE TABLE ... AND COMMIT on al the table in the schema. If the additional
NO CHECK option is also specified, then the TRUNCATE statement is executed even if any of the tables in the
schemaisreferenced in aFOREIGN KEY constraint defined on a non-empty table in a different schema.

If RESTART IDENTITY is specified, all table IDENTITY sequences and all SEQUENCE objects in the schema are
reset to their start values.

Use of this statement requires schema ownership or administrative privileges.

Insert Statement
INSERT INTO
insert statement

<insert statenment> ::= I NSERT I NTO <target table>[[AS] <correl ati on nane>]
<insert columms and source>

<insert columms and source> ::= <from subquery> | <from constructor> | <from
def aul t >
<from subquery> ::= [<left paren> <insert colum list> <right paren>]

[<override clause>] <query expression>

<from constructor> ::= [<left paren> <insert colum list> <right paren>]
[<override clause>] <contextually typed table val ue constructor>

<override clause> ::= OVERRI DI NG USER VALUE | OVERRI DI NG SYSTEM VALUE

<from defaul t> ::= DEFAULT VALUES

153

HyperS@L Data Access and Change

<insert colum list> ::= <colum nane |ist>
Insert new rows in atable. An INSERT statement inserts one or more rows into the table.

The specia form, | NSERT | NTO <t arget table> DEFAULT VALUES can be used with tables which have
adefault value for each column.

With the other forms of INSERT, the optional (<i nsert col unm |i st >) specifiesto which columns of the
table the new values are assigned.

Inoneform, theinserted valuesarefroma<quer y expr essi on>andall therowsthat arereturned by the<query
expr essi on> areinserted into the table. If the<query expr essi on> returns no rows, nothing is inserted.

In the other form, a comma separated list of values called <contextually typed table value
const r uct or >isusedtoinsert one or morerowsintothetable. Thislist iscontextually typed, becausethe keywords
NULL and DEFAULT can be used for the values that are assigned to each column of the table. In this form, the
keyword DEFAULT means the default value of the column and can be used only if the target column has a default
valueorisan IDENTITY or GENERATED column of the table.

The<overri de cl ause> must be used when avalueis explicitly assigned to a column that has been defined as
GENERATED ALWAYSASIDENTITY. The OVERRIDING SY STEM VALUE clause must be used to overridethe
seguence value with the user-supplied values. For columns defined as GENERATED BY DEFAULT ASIDENTITY,
there is no need to use OVERRIDING when the user provides values to be used for the insert. The OVERRIDING
USER VALUE clause can be used with all types of GENERATED columns and means the values provided by the
user are simply ignored and new values generated by the system are used instead. Two examples of table definition
are given below.

CREATE TABLE t1 (id | NTEGER GENERATED ALWAYS AS | DENTI TY(START W TH 100), name VARCHAR(20)
PRI MARY KEY)

CREATE TABLE t2 (id | NTEGER GENERATED BY DEFAULT AS | DENTI TY(START W TH 1) PRI MARY KEY, name
VARCHAR(20))

In both examples below, the value inserted for the id column is 14. In the first example, it is necessary to use
OVERRIDING SY STEM VALUE when inserting into the id column of table t1 because the column has been defined
as GENERATED ALWAYS. In the second example, no OVERRIDING clause is required for the insert into table t2
asitsid column is defined as GENERATED BY DEFAULT. In both examples, if there is an existing row with that
value as primary key, a constraint violation exception is thrown.

INSERT INTO t1 (id, name) OVERRI DI NG SYSTEM VALUE VALUES (14, 'Test Val ue')
INSERT INTO t2 (id, name) VALUES (14, 'Test Val ue')

In the examples below, OVERRIDING USER VALUE is used to let the system generate values for the id column.
The generated values override the value 14 in the first example, and the existing values for the id column in the table
in the second example.

INSERT INTO t1 (id, name) OVERRI DI NG USER VALUE VALUES (14, 'Another Test Val ue')
INSERT INTO t1 (id, name) OVERRI DI NG USER VALUE (SELECT * FROMt1)

An array can be inserted into a column of the array type by using literals, by specifying a parameter in a prepared
statement or an existing array returned by query expression. The last example below inserts an array.

The rows that are inserted into the table are checked against all the constraints that have been declared on the table.
The whole INSERT operation failsif any row failsto inserted due to constraint violation. Examples:

CREATE TABLE T (A | NTEGER GENERATED BY DEFAULT AS | DENTITY, B | NTEGER DEFAULT 2)
I NSERT | NTO T DEFAULT VALUES /* all columms of T have DEFAULT cl auses */
INSERT INTO T (SELECT * FROM 2) /* table Z has the sanme colums as table T */

154

HyperS@L Data Access and Change

INSERT INTO T (A B) VALUES ((1,2),(3,NULL), (DEFAULT,6)) /* three rows are inserted into table T
*
/
ALTER TABLE T ADD COLUWN D VARCHAR(10) ARRAY /* an ARRAY colum is added */
I NSERT | NTO T VALUES DEFAULT, 3, ARRAY['hot','cold']

If the table contains an IDENTITY column, the value for this column for the last row inserted by a session can be
retrieved using acall tothe IDENTITY () function. Thiscall returnsthelast value inserted by the calling session. When
the insert statement is executed with a JDBC Statement or PreparedStatement method, the get Gener at edKeys()
method of Statement can be used to retrieve not only the IDENTITY column, but also any GENERATED computed
column, or any other column. The get Gener at edKeys() returns a ResultSet with one or more columns. This
contains one row per inserted row, and can therefore return all the generated columns for a multi-row insert.

There are three methods of specifying which generated keys should be returned. The first method does not specify
the columns of the table. With this method, the returned ResultSet will have a column for each column of the table
that is defined as GENERATED ... ASIDENTITY or GENERATED ... AS (<expression>). The two other methods
require the user to specify which columns should be returned, either by column indexes, or by column names. With
these methods, there is no restriction on which columns of the inserted valuesto be returned. Thisis especialy useful
when some columns have a default clause which is a function, or when there are BEFORE triggers on the table that
may provide the inserted value for some of the columns.

In MySQL syntax compatibility mode, HyperSQL supports INSERT IGNORE, REPLACE and ON DUPLICATE
KEY UPDATE variations of the INSERT statement.

Update Statement

UPDATE
update statement: searched

<update statenent: searched> ::= UPDATE <target table> [[AS] <correlation
nanme> | SET <set clause list> [WHERE <search condition>][LIMT <fetch first
row count > |

Update rows of atable. An UPDATE statement selectsrowsfromthe<t ar get t abl e>usinganimplicit SELECT
statement formed in the following manner:

SELECT * FROM <target table> [[AS] <correlation nane>] [WHERE <search
condi tion>]

Then it appliesthe SET <set cl ause |i st > expression to each selected row.

If theimplicit SELECT returns no rows, no update takes place. When used in JDBC, the number of rows returned by
theimplicit SELECT is returned as the update count.

If there are FOREIGN KEY constraints on other tables that reference the subject table, and the FOREIGN KEY
constraints have referential actions, then rows from those other tables that reference the updated rows are updated,
according to the specified referential actions.

The rows that are updated are checked against all the constraints that have been declared on the table. The whole
UPDATE operation failsif any row violates any constraint.

The LIMIT clause, or dternatively the ROWNUMY() function in the WHERE clause, can be used to limit the number
of rows that are updated. Thisis useful when avery large number of rows needs to be updated. In this situation, you
can perform the operation is chunks and commit after each chunk to reduce memory usage and the total time of the
operation.

set clauselist

155

HyperS@L Data Access and Change

set clause list
<set clause list> ::= <set clause> [{ <comma> <set clause> }...]
<set clause> ::= <nultiple columm assignment> | <set target> <equal s operator>

<updat e source>

<mul tiple colum assignnent> ::= <set target |ist> <equals operator> <assi gned
row>
<set target list> ::= <left paren> <set target> [{ <comm> <set target>}...]

<right paren>

<assigned row> ::= <contextually typed row val ue expressi on>
<set target> ::= <col um nane>
<updat e source> :: = <val ue expressi on>| <contextually typed val ue specificati on>

Specify alist of assignments. Thisisused in UPDATE, MERGE and SET statements to assign values to a scalar or
row target.

Apart from setting awhole target to avalue, a SET statement can set individual elements of an array to new values.
The last example below shows this form of assignment to the array in the column named B.

In the examples given below, UPDATE statements with single and multiple assignments are shown. Note in the third
example, a SELECT statement is used to provide the update values for columns A and C, while the update value for
column B is given separately. The SELECT statement must return exactly one row . In this example the SELECT
statement refers to the existing value for column C in its search condition.

UPDATE T SET A = 5 WHERE ...
UPDATE T SET (A, B) = (1, NULL) VHERE ...

UPDATE T SET (A, C) = (SELECT X, Y FROMU WHERE Z = C), B = 10 WHERE ...
UPDATE T SET A = 3, B[3] = 'warn

Merge Statement

MERGE INTO
merge statement

<merge statenent> ::= MERGE |INTO <target table> [[AS] <nerge correlation
name>] USING <table reference> ON <search condition> <merge operation
speci fication>

<nerge correlation nane> ::= <correl ati on nane>

<merge operation specification> ::= <merge when cl ause>..

<merge when clause> ::= <merge when matched clause> | <merge when not natched
cl ause>

<merge when matched clause> ::= WHEN MATCHED [AND <search condition>] THEN

<nmerge update or del ete specification>

<nerge when not natched cl ause> ::= WHEN NOT MATCHED [AND <search condition>]
THEN <nerge insert specification>

156

HyperS@L Data Access and Change

<nmerge update specification> ::= UPDATE SET <set clause list>
<nerge del ete specification> ::= DELETE
<nerge insert specification> ::= INSERT [<left paren> <insert colum Ilist>

<right paren>] [<override clause>] VALUES <nerge insert value list>

<nmerge insert value list> ::= <left paren> <nerge insert value elenment>
[{ <comma> <nerge insert value element>}...] <right paren>
<nerge insert value element> ::= <val ue expression> | <contextually typed val ue

speci fication>

Update rows, delete rows or insert new rows into the <t ar get t abl e>. The MERGE statement uses a second
table, specified by <t abl e r ef er ence>, to determine the rows to be updated or inserted. It is possible to use the
statement only to update rows, to delete rows or to insert rows, but usually both update and insert are specified.

The <sear ch condi ti on> matches each row of the <t abl e r ef er ence> with each row of the <t ar get

t abl e>. If thetwo rows match then the UPDATE clauseis used to update the matching row of the target table. Those
rows of <t abl e ref er ence> that have no matching rows are then used to insert new rows into the <t ar get

t abl e>. Therefore, aMERGE statement can update or delete between 0 and all therows of the<t ar get t abl e>
and can insert between 0 and the number of the rowsin <t abl e ref erence> into the<t arget tabl e>.If
any row in the <t ar get t abl e> matches more than one row in <t abl e ref er ence> acardindity error is
raised. On the other hand, several rowsinthe<t ar get t abl e>canmatchasinglerowin<t abl e r ef erence>
without any error. The constraints and referential actions specified on the database tables are enforced the same way
asfor an update, a delete and an insert statement.

Theoptiona <sear ch condi ti on>ineach WHEN clause can be used to filter (reduce) the rowsfor the particular
action.

The MERGE statement can be used with only the WHEN NOT MATCHED clause asaconditional INSERT statement
that inserts arow if no existing rows match a condition.

Inthefirst example below, the table originally containstwo rowsfor different furniture. The<t abl e r ef erence>
isthe(VALUES(1, 'conference table'), (14, 'sofa'), (5, 'coffee table')) expression,
which evaluates to a table with 3 rows. When the x value for arow matches an existing row, then the existing row is
updated. When the x value does not match, the row is inserted. Therefore one row of tablet is updated from ‘dining
table' to 'conference table', and two rows are inserted into table t. The second example uses a SELECT statement as
the source of the values for the MERGE.

Inthethird example, anew row ininserted into the table only when the primary key for the new row does not exist. This
example uses parameters and should be executed as a JDBC PreparedStatement. The parameter is cast as INTEGER
because the MERGE statement does not determine the types of valuesin the USING clause.

In the fourth example, existing rows that match are del eted.

CREATE TABLE t (id INT PRIMARY KEY, description VARCHAR(100))
INSERT INTOt VALUES (1, 'dining table'), (2, 'deck chair')

MERGE | NTO t USI NG (VALUES(1, 'conference table'), (14, 'sofa'), (5, 'coffee table'))
AS val s(x,y) ONt.id = vals.x
WHEN MATCHED THEN UPDATE SET t. description = vals.y
WHEN NOT MATCHED THEN | NSERT VALUES vals.x, vals.y

MERGE I NTO t USI NG (SELECT * FROMtt WHERE acol = 2) AS vals(x,y) ONt.id = vals.x
WHEN MATCHED THEN UPDATE SET t. description = vals.y
WHEN NOT MATCHED THEN | NSERT VALUES vals.x, vals.y

157

HyperS@L Data Access and Change

MERGE I NTO t USI NG (VALUES(CAST(? AS INT))) AS vals(x) ONt.id = vals.x
WHEN NOT MATCHED THEN | NSERT VALUES vals.x, ?

MERGE I NTO t USI NG (SELECT * FROMtt WHERE acol = 2) AS vals(x,y) ONt.id = vals.x
WHEN MATCHED THEN DELETE
WHEN NOT MATCHED THEN | NSERT VALUES vals.x, vals.y

Diagnostics and State

HyperSQL supports some SQL statements, expressions, functions, and Java methods that report on the most recently
executed statement.

Thel DENTI TY() function returnsthe last inserted identity value for the current session.

The GET DI AGNCSTI CS statement is supported to alimited extent. The built-in function DI AGNOSTI CS() isan
alternative. These are normally used in SQL/PSM routines to check the result of the last data update operation.

GET DIAGNOSTICS
get diagnostics statement

<get diagnostics statenent> ::= GCGET DN AGNCSTICS <sinple target value
speci ficati on> = RON COUNT

The<si npl e target val ue specificati on>isasessionvariable, or aroutinevariable or OUT parameter.

The keyword ROW COUNT specifies the row count returned by the last executed statement. For INSERT, UPDATE,
DELETE and MERGE statements, this is the number of rows affected by the statement. This is the same value as
returned by JDBC execut eUpdat e() methods. For all other statements, zero is returned.

The value of ROW COUNT is stored in the specified target.
This statement is often used in CREATE PROCEDURE statements.

In future versions, more options will be supported for diagnostics values.

158

HyperS@L

Chapter 8. SQL-Invoked Routines

Fred Toussi, The HSQL Development Group

$Revision: 6110 $
Copyright 2010-2020 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group

to distribute this document with or without alterations under the terms of the HSQLDB license.
2020-06-29

Overview

SQL-invoked routines are functions and procedures called from SQL. HyperSQL 2.5 supports routines conforming
to two parts of the SQL Standard. Routines written in the SQL language are supported in conformance to SQL/PSM
(Persistent Stored Modules) specification. Routines written in Java are supported in broad conformance to SQL/JRT
specification. In addition, HyperSQL's previous non-standard support for calling Java routines without prior method
definition is retained and enhanced in the latest version by extending the SQL/JRT specification.

HyperSQL also supports user-defined aggregate functions written in the SQL language or Java. This feature is an
extension to the SQL Standard.

SQL-invoked routines are schema-level objects. Naming and referencing follows conventions common to all schema
objects. The same routine name can be defined in two different schemas and used with schema-qualified references.

A routineis either a procedure or afunction.

A function:

* isdefined with CREATE FUNCTION

» awaysreturnsasingle value or asingle table
« does not modify the datain the database

* isused as part of an SQL statement such as a SELECT statement, as well as called separately using the CALL
Statement

* can have parameters

* can be polymorphic

A procedure;

* isdefined with CREATE PROCEDURE

* can return zero to multiple values or result sets
» can modify the datain the database

* iscalled separately, using the CALL statement

 can have parameters

159

HyperS@L SQL-Invoked Routines

* can be polymorphic

Definition of routine signature and characteristics, name resolution and invocation are al implemented uniformly for
routines written in SQL or Java.

Accessto routines can be granted to userswith GRANT EXECUTE or GRANT ALL. For example, GRANT EXECUTE
ON nyroutine TO PUBLI C.

Routine Definition

SQL-Invoked Routines, whether PSM or JRT, are defined using a SQL statement with the same syntax. The part that
is different is the <r out i ne body> which consists of SQL statements in PSM routines or a reference to a Java
method in JRT routines.

Detailsof Routine definition are discussed in thissection. Y ou may start by reading the next two sectionswhich provide
several examples before reading this section for the details.

Routine definition has several mandatory or optional clauses. The complete BNF supported by HyperSQL and the
remaining clauses are documented in this section.

CREATE FUNCTION
CREATE PROCEDURE
routine definition

Routine definition is similar for procedures and functions. A function definition has the mandatory <r et ur ns
cl ause> whichisdiscussed later. The description given so far coversthe essential elements of the specification with
the BNF given below.

<schemm procedure> ::= CREATE PROCEDURE <schema qualified routine nanme> <SQ
paranmeter declaration list> <routine characteristics> <routine body>

<schema function> ::= CREATE FUNCTION <schenma qualified routine name> <SQ
par amet er declaration list> <returns clause> <routine characteristics> <routine
body>

Parameter declaration list has been described above. For SQL/JRT routines, the <SQL par anet er nane> is
optional while for SQL/PSM routines, it isrequired. If the<par anet er nbde> of aparameter isOUT or INOUT,
it must be specified. The BNF is given below:

<SQ. paraneter declaration list> ::= <left paren> [<SQ paraneter declaration>
[{ <comma> <SQL paraneter declaration>}...]] <right paren>
<SQ. paraneter declaration> ::= [<paraneter node>] [<SQ. paranmeter nane>]

<par ameter type>

<paraneter node> ::= IN| OUT | | NOUT

<paraneter type> ::= <data type>
Return Value and Table Functions
RETURNS

returns clause

160

HyperS@L SQL-Invoked Routines

The<returns cl ause> specifies the type of the return value of a function (not a procedure). For all SQL/PSM
functions and ordinary SQL/JRT functions, thisis simply a type definition which can be a built-in type, a DOMAIN
type or aDISTINCT type, or alternatively, a TABLE definition. For example, RETURNS INTEGER.

For a SQL/JRT function, it is possible to define a <returns table type> for aJava method that returns
aj ava. sql . Resul t Set object. Such SQL/JRT functions are called table functions. Table functions are used
differently from normal functions. A table function can be used in an SQL query expression exactly where a normal
table or view isalowed. At the time of invocation, the Java method is called and the returned ResultSet is transformed
into an SQL table. The column types of the declared TABL E must match those of the ResultSet, otherwise an exception
israised at the time of invocation.

If a<returns table type>isdefinedfor an SQL/PSM function, the following expression is used inside the
function to return atable RETURN TABLE (<query expression>); Intheexample blow, atable with
two columnsis returned.

| RETURN TABLE (SELECT a, b FROM atabl e WHERE e = 10); |

Functions that return a table are designed to be used in SELECT statements using the TABLE keyword to form a
joined table.

When aJDBC Cal | abl eSt at enment isused to CALL the function, the table returned from the function call is
returned and can be accessed with the get Resul t Set () method of the Cal | abl eSt at enment .

<returns clause> ::= RETURNS <returns type>

<returns type> ::= <returns data type> | <returns table type>

<returns table type> ::= TABLE <table function colum Iist>

<table function colum list> ::= <left paren> <table function colum Ii st
elenent> [{ <conmma> <table function colum list element>} ...] <right paren>
<table function columm list element> ::= <columm nane> <data type>

<returns data type> ::= <data type>

routine body
routine body

Routine body is either one or more SQL statements or a Javareference. The user that defines the routine by issuing the
CREATE FUNCTION or CREATE SCHEMA command must have the relevant accessrightsto all tables, sequences,
routines, etc. that are accessed by theroutine. If another user isgiven EXECUTE privilege on theroutine, then there are
two possibilities, depending onthe<ri ght s cl ause>. Thisclauserefersto the accessrightsthat are checked when
aroutineisinvoked. The default is SQL SECURI TY DEFI NER, which means access rights of the definer are used;
therefore, no extra checks are performed when the other user invokes the routine. The aternative SQL SECURI TY
I NVOKER means access rights on al the database objects referenced by the routine are checked for the invoker. This
alternative is not supported by HyperSQL.

<routine body> ::= <SQ. routine spec> | <external body reference>
<SQ. routine spec> ::=[<rights clause>] <SQ routine body>
<rights clause> ::= SQ SECURI TY | NVOKER | SQ. SECURI TY DEFI NER

SQL routine body

161

HyperS@L SQL-Invoked Routines

QL routine body

The routine body of an SQL routine consists of an statement.

<SQ@. routine body> ::= <SQ. procedure statenent>
EXTERNAL NAME

external body reference

External name specifies the qualified name of the Java method associated with this routine. HyperSQL only supports
Javamethods within the classpath. The<ext er nal Java ref erence stri ng>isaquoted string which starts
with CLASSPATH: and is followed by the Java package, class and method names separated with dots. HyperSQL
does not currently support the optional <Java par anet er decl aration |ist>.

<external body reference> ::= EXTERNAL NAME <external Java reference string>

<external Java reference string> ::= <jar and class name> <peri od> <Java net hod
nane> [<Java paraneter declaration |ist>]

Routine Characteristics

The<routi ne characteri sti cs> clause covers severa sub-clauses

<routine characteristics> ::=[<routine characteristic>...]

<routine characteristic> ::= <language clause> | <paraneter style clause> |
SPECI FI C <specific name> | <deterministic characteristic> | <SQ.-data access
indication> | <null-call clause> | <returned result sets characteristic> |

<savepoi nt |evel indication>
LANGUAGE
language clause

The<l anguage cl ause> refersto the language in which the routine body iswritten. It is either SQL or Java. The
default is SQL, so JAVA must be specified for SQL/JRT routines.

<l anguage cl ause> ::= LANGUAGE <l anguage nane>
<l anguage name> ::= SQL | JAVA

The parameter styleisnot alowed for SQL routines. It is optional for Java routines and, in HyperSQL, the only value
allowed isJAVA.

<paraneter style> ::= JAVA
SPECIFIC NAME
specific name

The SPECI FI C <speci fi ¢ nane> clauseis optional but the engine will creates an automatic name if it is not
present. When there are several versions of the sameroutine, the<speci f i ¢ name>isused in schemamanipulation
statements to drop or alter a specific version. The <speci fi ¢ nane> is a user-defined name. It applies to both
functions and procedures. In the examples below, two versions of a functions are defined with the same name and
different parameter types. A specific nameis specified for each function.

162

HyperS@L SQL-Invoked Routines

CREATE FUNCTI ON an_hour _before(t TI MESTAMP)
RETURNS TI MESTAMP
NO SQL
LANGUAGE JAVA PARAMETER STYLE JAVA
SPECI FI C an_hour _before_or_now wi th_ti mestanp
EXTERNAL NAME ' CLASSPATH: or g. npo. | i b. nowLessAnHour"'

CREATE FUNCTI ON an_hour _before (e_type |NT)
RETURNS TI MESTAMP SPECI FI C an_hour _before_max_wi t h_i nt
RETURN (SELECT MAX(event_tine) FROM atabl e WHERE event type = e_type) - 1 HOUR

DETERMINISTIC
deterministic characteristic

The<det erm nistic characteri sti c>clauseindicatesthat aroutineis deterministic or not. Deterministic
means the routine does not reference random values, external variables, or time of invocation. The default is NOT
DETERM NI STI C. Itisessential to declarethischaracteristic correctly for an SQL/JRT routine, asthe engine doesnot
know the contents of the Java code, which could include calls to methods returning random or time sensitive values.

<determ nistic characteristic> ::= DETERM NI STIC | NOT DETERM NI STI C
SQL DATA access
0L DATA access characteristic

The<SQL- dat a access i ndi cat i on> clauseindicatesthe extent to which aroutineinteracts with the database
or the data stored in the database tables in different schemas (SQL DATA).

NO SQL means no SQL command is issued in the routine body and can be used only for SQL/JRT functions.

CONTAI NS SQ. means some SQL commands are used, but they do not read or modify the SQL data. READS SQL
DATA and MODI FI ES SQL DATA are self-explanatory.

A CREATE PROCEDURE definition can use MODI FI ES SQ. DATA. Thisisnot allowed in CREATE FUNCTI ON.
Note that a PROCEDURE or a FUNCTION may have internal tables or return a table which is populated by the
routine's statements. These tables are not considered SQL DATA, therefore there is no need to specify MODI FI ES
SQL DATA for such routines.

<SQL-data access indication> ::= NO SQL | CONTAINS SQL | READS SQ. DATA |
MODI FI ES SQ. DATA

NULL INPUT
null call clause
Null Arguments

The <nul | -cal | cl ause> is used only for functions. If a function returns NULL when any of the calling
arguments is null, then by specifying RETURNS NULL ON NULL | NPUT, cals to the function are known to be
redundant and do not take place when an argument is null. This simplifies the coding of the SQL/JRT Java methods
and improves performance at the same time.

<nul |l -call clause> ::= RETURNS NULL ON NULL I NPUT | CALLED ON NULL | NPUT

SAVEPOINT LEVEL

163

HyperS@L SQL-Invoked Routines

transaction impact

The <savepoi nt | evel indication>isusedonly for procedures and refers to the visibility of existing
savepoints within the body of the procedure. If NEW SAVEPQO NT LEVEL is specified, savepoints that have been
declared prior to calling the procedure becomeinvisible within the body of the procedure. HyperSQL ' simplementation
accepts only NEW SAVEPO NT LEVEL.

<savepoi nt level indication> ::= NEW SAVEPO NT LEVEL | OLD SAVEPO NT LEVEL
DYNAMIC RESULT SETS
returned result sets characteristic

The<returned result sets characteri sti c>isusedwith SQL/PSM and SQL/JRT procedures (not with
functions). The maximum number of result sets that a procedure may return can be specified with the clause below.
The default is zero. If you want your procedure to return result sets, you must specify the maximum number of result
sets that your procedure may return. Details are discussed in the next sections.

<returned result sets characteristic> ::= DYNAM C RESULT SETS <naxi mum r et ur ned
result sets>

SQL Language Routines (PSM)

The PSM (Persistent Stored Module) specification extends the SQL language with structures and control statements
such as conditional and loop statements. Both SQL Function and SQL procedure bodies use the same syntax, with
minor exceptions.

The routine body is a SQL statement. In its simplest form, the body is a single SQL statement. A simple example of
afunctionis given below:

CREATE FUNCTI ON an_hour _before (t TI MESTAMP)
RETURNS TI MESTAMP
RETURN t - 1 HOUR

An example of the use of the function in an SQL statement is given below:

‘ SELECT an_hour _before(event _tinestanp) AS notification_tinestanp, event_nane FROM events;

A simple example of a procedureis given below. The CUSTOMERS table is defined below :

CREATE PROCEDURE new_custoner (firstnane VARCHAR(50), | astnanme VARCHAR(50))
MODI FI ES SQL DATA
| NSERT | NTO CUSTOVERS VALUES DEFAULT, firstnane, |astname, CURRENT_TI MESTAMP;

The procedure inserts a row into an existing table with the definition given below. The second table is used in other
examples:

CREATE TABLE custoners(id | NTEGER GENERATED BY DEFAULT AS | DENTITY, firstnane VARCHAR(50),
| ast name VARCHAR(50), added TI MESTAMP) ;

CREATE TABLE addresses(id | NTEGER GENERATED BY DEFAULT AS | DENTITY, customerid | NTEGER, address
VARCHAR(50)) ;

An example of the use of the procedure is given below:

164

HyperS@L SQL-Invoked Routines

‘ CALL new custoner (' JOHN , 'SMTH); ‘

The routine body is often a compound statement. A compound statement can contain one or more SQL statements,
which can include control statements, as well as nested compound statements.

Please note carefully the use of <semi col on>, which is required at the end of some statements but not accepted
at the end of others.

Advantages and Disadvantages

SQL Language Routines (PSM) have certain advantages over Java Language Routines (SQL/JRT) and a couple of
disadvantages.

» SQL language routines (PSM) do not rely on custom Java classes to be present on the classpath. The databases that
use them are therefore more portable.

» For aroutine that accesses SQL DATA, al the SQL statementsin an SQL routine are known and monitored by the
engine. The engine will not allow atable, routine or sequence that is referenced in an SQL routine to be dropped,
or its structure modified in a way that will break the routine execution. The engine does not keep this information
about a Javaroutine.

» Because the statements in an SQL routine are known to the engine, the execution of an SQL routine locks all
the database objects it needs to access before the actual execution. With Java routines, locks are obtained during
execution and this may cause additional delays in multi-threaded access to the database.

* For routines that do not access SQL DATA, Java routines (SQL/JRT) may be faster if they perform extensive
calculations.

» Only Javaroutines can access external programs and resources directly.

Routine Statements

The following SQL Statements can be used only in routines. These statements are covered in this section.
<handl er decl arati on>

<tabl e vari abl e decl arati on>
<vari abl e decl arati on>

<decl are cursor>

<assi gnnent st at enent >
<conpound st at enent >

<case st atenent>

<if statenent>

<whi | e statement>

<repeat statenent>

<for statenent>

<l oop statenent>

165

HyperS@L SQL-Invoked Routines

<iterate statenent

<l eave statenment>

<si gnal st atenent>

<resi gnal statenent>

<return statenent>

<sel ect statement: single row
<open st at enent >

Thefollowing SQL Statements can beused in proceduresbut not in generally in functions (they can be usedin functions
only to change the datain alocal table variable) . These statements are covered in other chapters of this Guide.

<cal | statement>
<del ete statenment>
<i nsert statenent>
<updat e statenent >
<mer ge statement>

Transaction statements such as COMMIT and ROLLBACK are not alowed in the body of a function or procedure.
When the session isin auto-commit mode, the commit takes place after the execution of the whole procedure has been
completed. No commit is performed during the execution.

As shown in the examples below, the formal parameters and the variables of the routine can be used in statements,
similar to the way a column referenceis used.

Compound Statement

A compound statement is enclosed in a BEGIN / END block with optional labels. It can contain one or more <SQL
vari abl e decl arati on>, <decl are cursor>or<handl er decl arati on> before at least one SQL
statement. The BNF is given below:

<conpound statenent> ::= [<beginning | abel> <colon>] BEGA N [[NOT] ATOM C]
[{<SQ variabl e decl aration> <sem colon>} ...]
[{<decl are cursor> <sem col on>} ...]

[{<handl er decl aration> <senicolon>}...]
{<SQL procedure statenment> <senicol on>}
END [<ending | abel >]

An example of asimple compound statement body isgiven below. It performsthe common task of inserting related data
into two table. The IDENTITY valuethat isautomatically inserted in thefirst tableisretrieved using the IDENTITY ()
function and inserted into the second table. Other examples show more complex compound statements.

CREATE PROCEDURE new_cust omer (firstnane VARCHAR(50), |astname VARCHAR(50), address
VARCHAR(100))

166

HyperS@L SQL-Invoked Routines

MODI FI ES SQL DATA
BEG N ATOM C
I NSERT | NTO cust omers VALUES (DEFAULT, firstnane, |astname, CURRENT_TI MESTAWP);
I NSERT | NTO addr esses VALUES (DEFAULT, |DENTITY(), address);

END

Table Variables

A <tabl e variable declaration> defines the name and columns of a local table, that can be used in
the routine body. The table cannot have constraints. Table variable declarations are made before scalar variable
declarations.

BEG N ATOM C
DECLARE TABLE tenp_table (col _a INT, col _b VARCHAR(20);
DECLARE tenp_id | NTEGER,
-- nore statenents

END

Variables

A <vari abl e decl ar at i on> definesthe name and data type of the variable and, optionally, its default value. In
the next example, avariableisused to hold the IDENTITY value. In addition, the formal parameters of the procedure
are identified as input parameters with the use of the optional IN keyword. This procedure does exactly the same job
as the procedure in the previous example.

CREATE PROCEDURE new_custoner (I N firstname VARCHAR(50), I N |astname VARCHAR(50), I N address
VARCHAR(100))
MODI FI ES SQ. DATA
BEG N ATOM C
DECLARE tenp_i d | NTEGER,
I NSERT | NTO CUSTOVERS VALUES (DEFAULT, firstnane, |astname, CURRENT_TI MESTAWP);
SET tenp_id = | DENTI TY();
I NSERT | NTO ADDRESSES VALUES (DEFAULT, tenp_id, address);
END

The BNF for variable declaration is given below:
DECLARE variable
QL variable declaration

<SQL vari abl e decl arati on> :: = DECLARE <vari abl e nane |ist> <data type> [DEFAULT
<default val ue>]

<variable nane list> ::= <variable name> [{ <conmma> <variable name> }...]

Examples of variable declaration are given below. Note that in a DECL A RE statement with multiple comma-separated
variable names, the type and the default value appliesto all the variablesin the list:

BEG N ATOM C
DECLARE tenp_zero DATE;
DECLARE tenp_one, tenp_two | NTEGER DEFAULT 2;
DECLARE tenp_t hree VARCHAR(20) DEFAULT 'no nane';
-- nore statements ...
SET tenp_zero = DATE ' 2010-03-18';
SET tenp_two = 5;

167

HyperS@L SQL-Invoked Routines

-- nore statenments ...
END

Cursors

A <declare cursor> statement is used to declare a SELECT statement. The current usage of this
statement in HyperSQL is exclusively to return a result set from a procedure. The result set is returned
to the JDBC Cal | abl eSt at enent object that calls the procedure. The get Resul t Set () method of
Cal | abl eSt at ement isthen used to retrieve the IDBC ResultSet.

Inthe<r out i ne defi nition>theDYNAM C RESULT SETS clause must be used to specify avalue above zero.
The DECLARE CURSOR statement is used after any variable declaration in compound statement block. The SELECT
statement should be followed with FOR READ ONLY to avoid possible error messages. The<open st at ement >
is then executed for the cursor at the point where the result set should be popul ated.

After the procedure is executed with aJDBC Cal | abl eSt at enent execut e() or execut eQery() cal, al
the result sets that were opened are returned to the JDBC Cal | abl eSt at enent .

Cdling get ResultSet () will return the first ResultSet. When there are multiple result sets, the
get Mor eResul t s() method of the Callable statement is caled to move to the next ResultSet, before
get Resul t Set () iscaled to return the next ResultSet. See the Data Access and Change chapter on the syntax
for declaring the cursor.

BEG N ATOM C
DECLARE tenp_zero DATE;
DECLARE result CURSOR W TH RETURN FOR SELECT * FROM | NFORVATI ON_SCHEVA. TABLES FOR READ ONLY;
-- nore statements ...
OPEN resul t;
END

Handlers

A <handl er decl ar ati on> defines the course of action when an exception or warning is raised during the
execution of the compound statement. A compound statement may have one or more handler declarations. These
handlers become active when code execution enters the compound statement block and remain activein any sub-block
and statement within the block. The handlers become inactive when code execution leaves the block.

In the previous example of the new_cust oner procedure, if an exception is thrown during the execution of either
SQL statement, the execution of the compound statement is terminated and the exception is propagated and thrown
by the CALL statement for the procedure. All changes made by the procedure are rolled back.

A handler declaration can resolve the thrown exception within the compound statement without propagating it, and
allow the execution of the compound statement to continue.

In the example below, the UNDO handler declaration catches any exception that is thrown during the execution of the
compound statement insidethe BEG N . . . ENDblock. Asit isan UNDOhandler, al the changes to data performed
within the compound statement (BEG N ... END block) are rolled back. The procedure then returns without
throwing an exception.

CREATE PROCEDURE new_customner (I N firstname VARCHAR(50), | N |astname VARCHAR(50), I N address
VARCHAR(100))

MODI FI ES SQL DATA

| abel _one: BEG N ATOM C

DECLARE tenp_id | NTEGER;

DECLARE UNDO HANDLER FOR SQLEXCEPTI ON,

I NSERT | NTO CUSTOVERS VALUES (DEFAULT, firstnane, |astname, CURRENT_TI MESTAWP);

SET tenp_id = I DENTITY();

168

HyperS@L SQL-Invoked Routines

I NSERT | NTO ADDRESSES VALUES (DEFAULT, tenp_id, address);
END

Other types of hander are CONTI NUE and EXI T handlers. A CONTI NUE handler ignores any exception and proceeds
to the next statement in the block. An EXI T handler terminates execution without undoing the data changes performed
by the previous (successful) statements.

The conditions can be general conditions, or specific conditions.

Among general conditions that can be specified, SQLEXCEPTI ON covers all exceptions, SQLWARNI NG covers al
warnings, while NOT FOUND covers the not-found condition, which is raised when aDELETE, UPDATE, INSERT
or MERGE statement completes without actually affecting any row.

Alternatively, one or more specific conditions can be specified (separated with commas) which apply to specific
exceptions or warnings or classes or exceptions or warnings. A specific condition is specified with SQLSTATE
<val ue>, for example SQLSTATE ' W 01003"' specifies the warning raised after a SQL statement is executed
which contains an aggregate function which encounters a null value during execution. An example is given below
which activates the handler when either of the two warningsis raised:

‘ DECLARE UNDO HANDLER FOR SQLSTATE 'W01003', 'WO01004';

The BNF for <handl er decl arati on> isgiven below:
DECLARE HANDLER
declare handler statement

<handl er declaration> ::= DECLARE {UNDO | CONTINUE | EXIT} HANDLER FOR
{SQLEXCEPTION | SQLWARNING | NOT FOUND} | { SQ.STATE <state value> [, ...]}
[<SQL procedure statenent>];

A handler declaration may specify an <SQL procedure st atemnment > to be performed when the handler is
activated. In the example below the handler performs the UNDO as in the previous example then inserts the (invalid)
datainto a separate table.

CREATE PROCEDURE new_customner (I N firstname VARCHAR(50), I N |astname VARCHAR(50), I N address
VARCHAR(100))

MODI FI ES SQL DATA

| abel _one: BEG N ATOM C

DECLARE tenp_id | NTEGER;

DECLARE UNDO HANDLER FOR SQLEXCEPTI ON

I NSERT I NTO i nvalid_custoners VALUES(firstanne, |astnanme, address);

-- last statement is part of the handler; it is called only if the next statements throw an
exception

| NSERT | NTO CUSTOVERS VALUES (DEFAULT, firstname, |astname, CURRENT TI MESTAMP):
SET tenp_id = | DENTI TY();
| NSERT | NTO ADDRESSES VALUES (DEFAULT, tenp_id, address);

END

The<SQ. procedur e st at emrent >inthehandler declarationisrequired by the SQL Standard but isoptional in
HyperSQL. If the execution of the<SQ. pr ocedur e st at enent > specified in the handler declaration throws an
exception itself, then it is handled by the handlers that are currently active at an enclosing (outer) BEG N ... END
block. The<SQ. procedure st at enent > canitself be acompound statement with its own handlers.

When a handler handles an exception condition such as the general SQLEXCEPTI ON or some specific SQLSTATE,
any changes made by the statement that caused the exception will be rolled back. For example, execution of asingle

169

HyperS@L SQL-Invoked Routines

update statement that modifies several rows will not change any row if an exception occurs during the update of one
of the rows. The handler action affects the changes made by statements that were executed successfully before the
exception occurred.

Actions performed by different types of handler are listed below:

* An UNDO handler rolls back all the data changes withinthe BEG N ... END block which contains the handler
declaration. The execution of the BEG N ... END block is considered complete. If an <SQL pr ocedur e
st at emrent > is specified, it is executed after the roll back.

« A CONTI NUE handler does not roll back the data changes. It continues execution as if the last statement was
successful. If an<SQL pr ocedur e st at enment > isspecified, it is executed before continuing execution.

« An EXI T handler does not roll back the data changes. It aborts the execution of the BEG N ... END block
which contains the handler declaration. The execution of the BEG N . .. ENDblock is considered complete, but
unlike the UNDO handler the actions are not rolled back. If an <SQL pr ocedure st at enent > is specified,
it is executed before aborting.

Assignment Statement

The SET statement is used for assignment. It can be used flexibly with rows or single values. The BNF is given below:

<assi gnnent statenent> ::= <singleton variable assignment> | <multiple variable
assi gnment >

<singl eton variable assignnent> ::= SET <assignment target> <equal s operator>
<assi gnnent source>

<rmul tiple variable assignnent> ::= SET (<variable or paranmeter>, ...) = <row
val ue expression>

In the example below, the result of the SELECT is assigned to two OUT or INOUT arguments. The SELECT must
return one row. If it returns more than one, an exception is raised. If it returns no row, no change is made to ARG1
and ARG2.

‘ SET (argl, arg2) = (SELECT col 1, col2 FROM atable WHERE id = 10); ‘

In the example below, the result of afunction call is assigned to VAR1.

‘ SET varl = SQRT(var?2); ‘

Select Statement : Single Row

A specia form of SELECT can also be used for assigning values from a query to one or more arguments or variables.
Thisworks similar to a SET statement that has a SELECT statement as the source.

SELECT : SINGLE ROW
select statement: single row

<select statenent: single row> ::= SELECT [<set quantifier>] <select list>
I NTO <sel ect target |ist> <table expression>

<select target list> ::= <target specification> [{ <comma> <target
specification> }...]

170

HyperS@L SQL-Invoked Routines

Retrieve values from a specified row of atable and assign the fields to the specified targets. The example below has
an identical effect to the example of SET statement given above.

‘SELECT col1l, col2 INTO argl, arg2 FROM atabl e WHERE id = 10; ‘

Formal Parameters

Each parameter of a procedure can be defined as IN, OUT or INOUT. An IN parameter is an input to the procedure
and is passed by value. The value cannot be modified inside the procedure body. An OUT parameter is a reference
for output. An INOUT parameter is areference for both input and output. An OUT or INOUT parameter argument is
passed by reference, therefore only adynamic parameter argument or a variable within an enclosing procedure can be
passed for it. The assignment statement is used to assign avalue to an OUT or INOUT parameter.

In the example below, the procedure is declared with an OUT parameter. It assigns the auto-generated IDENTITY
value from the INSERT statement to the OUT argument.

CREATE PROCEDURE new_customer (OUT newid |INT, IN firstname VARCHAR(50), IN | astname VARCHAR(50),
I'N address VARCHAR(100))
MODI FI ES SQL DATA
BEG N ATOM C
DECLARE tenp_id | NTEGER;
I NSERT | NTO CUSTOVERS VALUES (DEFAULT, firstnane, |astname, CURRENT_TI MESTAMWP);
SET tenp_id = I DENTITY();
I NSERT | NTO ADDRESSES VALUES (DEFAULT, tenp_id, address);
SET newid = tenp_id;
END

In the SQL session, or in the body of another stored procedure, a variable must be assigned to the OUT parameter.
After the procedure call, this variable will hold the new identity value that was generated inside the procedure. If the
procedure is called directly, using the JDBC CallableStatement interface, then the value of the first, OUT argument
can be retrieved with acall to get | nt (1) after calling the execute() method.

In the example below, a session variable, t he_new i d is declared. After the call to new_cust oner, the value
for the identity is stored int he_new_i d variable. This is returned via the next CALL statement. Alternatively,
the_new i d can be used as an argument to another CALL statement. Session variables are useful during
development and for SQL scripting tools.

DECLARE the_new_id | NT DEFAULT NULL;
CALL new custoner(the_new.id, 'John', '"Smth', '10 Parlianent Square');
CALL the_new.id;

lterated Statements

Various iterated statements can be used in routines. In these statements, the <SQL st at enent | i st > consists of
one or more SQL statements. The<sear ch condi ti on> can be any valid SQL expression of BOOLEAN type.

LOOP
loop statement

<l oop statenent> ::= [<beginning |abel> <colon>] LOOP <SQ. statement |ist>
END LOOP [<ending | abel >]

WHILE

while statement

171

HyperS@L SQL-Invoked Routines

<whil e statenent> ::= [<beginning | abel > <colon>] WH LE <search condition> DO
<SQ. statement list> END WHILE [<endi ng | abel >]

REPEAT

repeat statement

<repeat statenment> ::= [<beginning | abel > <col on>]

REPEAT <SQL statement |ist> UNTIL <search condition> END REPEAT [<endi ng | abel >

In the example below, amultiple rows are inserted into atable in a WHILE loop:

DECLARE ny_ver | NTEGER DEFAULT 2;

| oop_| abel : WHI LE ny_var < 20 DO
I NSERT | NTO CUSTOMERS VALUES (DEFAULT, ny_var);
SET ny_var = ny_var + 1;

-- LEAVE can be used to break the | oop
I'F ny_var = 15 THEN LEAVE | oop_I| abel ; END I F;
END WHI LE | oop_|I abel ;

lterated FOR Statement

The <f or st at enment > issimilar to other iterated statement, but it is always used with a cursor declaration to
iterate over the rows of the result set of the cursor and perform operations using the values of each row.

FOR
for statement

<for statenment> ::=[<begi nning | abel > <col on>] FOR <query expressi on> DO <SQL
statenment list> END FOR [<ending | abel >]

The<query expression>isaSELECT statement. When the FOR statement isexecuted, the query expressionisexecuted
first and the result set is formed. Then for each row of the result set, the <SQL st at enent | i st > isexecuted.
What is special about the FOR statement is that all the columns of the current row can be accessed by name in the
statementsinthe<SQL st at enent | i st >. The columns are read only and cannot be updated. For example, if the
column names for the select statement are ID, FIRSTNAME, LASTNAME, then these can be accessed as a variable
name. The column names must be unique and not equivalent to any parameter or variable name in scope.

The FOR statement is useful for computing values over multiple rows of the result set, or for calling a procedure for
some row of the result set.

In the example below, the procedure uses a FOR statement to iterate over the rows for a customer with lastname equal
tolastname_p. No actionisperformed for thefirst row, but for all the subsegquent rows, therow isdeleted from thetable.

Note the following: Theresult set for the SELECT statement is built only once, before processing the statementsinside
the FOR block begins. For al the rows of the SELECT statement apart from the first row, the row is deleted from
the customer table. The WHERE condition uses the automatic variable id, which holds the customer.id value for the
current row of the result set, to delete the row. The procedure updates the val_p argument and when it returns, the
val_p represents the total count of rows with the given lastname before the duplicates were del eted.

CREATE PROCEDURE test_proc(lI NOUT val _p INT, IN |astname_p VARCHAR(20))
MODI FI ES SQL DATA
BEG N ATOM C

SET val _p = 0;

172

HyperS@L SQL-Invoked Routines

for_label : FOR SELECT * FROM custoner WHERE | astnanme = | astnanme_p DO
IF val_p > 0 THEN
DELETE FROM custoner WHERE custoner.id = id;
END | F;
SET val _p = val _p + 1;
END FOR for_| abel ;
END

Conditional Statements

There are two types of CASE ... WHEN statement and the IF ... THEN statement.
CASE WHEN
case when statement

The simple case statement usesa<case oper and> as the predicand of one or more predicates. For the right part
of each predicate, it specifies one or more SQL statements to execute if the predicate evaluates TRUE. If the ELSE
clauseis not specified, at least one of the search conditions must be true, otherwise an exception is rai sed.

<sinple case statenent> ::= CASE <case operand> <sinple case statenent when
clause>... [<case statenment else clause>] END CASE
<sinple case statenent when clause> ::= WHEN <when operand |ist> THEN <SQL

statenment |ist>
<case statement else clause> ::= ELSE <SQL statenent |ist>

A skeletal exampleisgiven below. Thevariablevar_oneisfirst tested for equality with 22 or 23 and if thetest eval uates
to TRUE, then the INSERT statement is performed and the statement ends. If the test does not evaluate to TRUE,
the next condition test, which isan IN predicate, is performed with var_one and so on. The statement after the EL SE
clauseis performed if none the previous tests returns TRUE.

CASE var _one
VWHEN 22, 23 THEN I NSERT INTO t _one .. .;
WHEN IN (2, 4, 5) THEN DELETE FROMt _one WHERE .. .;
ELSE UPDATE t_one ...;
END CASE

The searched case statement uses one or more search conditions, and for each search condition, it specifies one or
more SQL statements to execute if the search condition evaluates TRUE. An exception is raised if thereis no ELSE
clause and none of the search conditions evaluates TRUE.

<searched case statenent> ::= CASE <searched case statenent when clause>...
[<case statement el se clause>] END CASE

<searched case statenent when clause> ::= WHEN <search condition> THEN <SQL
statenment |ist>

The example below is partly arewrite of the previous example, but a new condition is added:

CASE WHEN var_one = 22 OR var_one = 23 THEN I NSERT INTOt_one ...;
WHEN var _one IN (2, 4, 5) THEN DELETE FROM t _one WHERE .. .;
WHEN var _two IS NULL THEN UPDATE t_one ...;

ELSE UPDATE t_one ...;
END CASE

173

HyperS@L SQL-Invoked Routines

IF
if statement

Theif statement is very similar to the searched case statement. The difference is that no exception israised if thereis
no EL SE clause and no search condition evaluates TRUE.

<if statenment> ::= |F <search condition> <if statenent then clause> [<if
statement elseif clause>...] [<if statement else clause>] END IF

<if statenment then clause> ::= THEN <SQ. statenent |ist>

<if statenent elseif clause> ::= ELSEIF <search condition> THEN <SQL st at enent
list>

<if statenment else clause> ::= ELSE <SQ. statenent |ist>

Return Statement

The RETURN statement isrequired and used only in functions. The body of afunctioniseither aRETURN statement,
or acompound statement that contains a RETURN statement.

Thereturn value of aFUNCTION can be assigned to a variable, or used inside an SQL statement.

An SQL/PSM function or an SQL/JRT function can return a single result when the function is defined as RETURNS
TABLE(..)

Toreturn atablefromaSELECT statement, you should use areturn statement suchasRETURN TABLE(SELECT ...)
in an SQL/PSM function. For an SQL/JRT function, the Java method should return a JDBCResultSet instance.

To call afunction from JDBC, useaj ava. sql . Cal | abl eSt at ement instance. The get Resul t Set () call
can be used to access the ResultSet returned from a function that returns a result set. If the function returns a scalar
value, the returned result has a single column and a single row which contains the scalar returned value.

RETURN

return statement

<return statenment> ::= RETURN <return val ue>
<return value> ::= <val ue expression> | NULL

Return a value from an SQL function. If the function is defined as RETURNS TABLE, then the valueisa TABLE
expression such as RETURN TABLE(SELECT ...) otherwise, the value expression can be any scalar expression. In
the examples below, the same function iswritten with or without aBEGIN END block. In both versions, the RETURN
value is a scalar expression.

CREATE FUNCTI ON an_hour _before_max (e_type | NT)
RETURNS Tl MESTAMP
RETURN (SELECT MAX(event _tine) FROM atabl e WHERE event _type = e_type) - 1 HOUR

CREATE FUNCTI ON an_hour _before_max (e_type | NT)
RETURNS Tl MESTAMP
BEG N ATOM C
DECLARE max_event Tl MESTAWP;
SET max_event = SELECT MAX(event_tinme) FROM atabl e WHERE event _type = e_type;
RETURN max_event - 1 HOUR;
END

174

HyperS@L SQL-Invoked Routines

Control Statements

In addition to the RETURN statement, the following statements can be used in specific contexts.
ITERATE STATEMENT

The ITERATE statement can be used to cause the next iteration of alabelled iterated statement (a WHILE, REPEAT
or LOOP statement). It issimilar to the "continue" statement in C and Java.

<iterate statenent> ::= | TERATE <st atenent | abel >
LEAVE STATEMENT

The LEAVE statement can be used to leave a labelled block. When used in an iterated statement, it is similar to the
"break" statement is C and Java. But it can be used in compound statements as well.

<l eave statement> ::= LEAVE <statenent |abel >
Raising Exceptions

Signal and Resignal Statements allow the routine to throw an exception. If used with the IF or CASE conditions, the
exception is thrown conditionally.

SIGNAL
signal statement

The SIGNAL statement is used to throw an exception (or force an exception). When invoked, any exception handler
for the given exceptionisin turninvoked. If thereisno handler, the exception is propagated to the enclosing context. In
its ssimplest form, when there is no exception handler for the given exception, routine execution is halted, any change
of datais rolled back and the routine throws the exception. By default, the message for the exception is taken from
the predefined exception message for the specified SQLSTATE. A custom message can be specified with the optional
SET clause.

<signal statenent> ::= SIGNAL SQ.STATE <state value> [SET MESSACE TEXT =
<character string literal >]

RESIGNAL
resignal statement

The RESIGNAL statement is used to throw an exception from an exception handler's <SQ. procedure
st at ement >, in effect propagating the exception to the enclosing context without further action by the currently
active handlers. By default, the message for the exception is taken from the predefined exception message for the
specified SQLSTATE. A custom message can be specified with the optional SET clause.

<resignal statenent> ::= RESIGNAL SQLSTATE <state value> [SET MESSAGE TEXT =
<character string literal >]

Routine Polymorphism

More than one version of aroutine can be created.

For procedures, the different versions must have different parameter counts. When the procedure is called, the
parameter count determines which version is called.

175

HyperS@L SQL-Invoked Routines

For functions, the different versions can have the same or different parameter counts. When the parameter count of
two versions of afunction is the same, the type of parameters must be different. When the function is called, the best
matching version of the function is used, according to both the parameter count and parameter types. The return type
of different versions of afunction can be the same or different.

Two versions of an overloaded function are given below. One version accepts TIMESTAMP while the other accepts
TIME arguments.

CREATE FUNCTI ON an_hour _before_or_now(t TI MESTAMP)
RETURNS TI MESTAMP
IF t > CURRENT_TI MESTAMP THEN
RETURN CURRENT_TI MESTAMP,
ELSE
RETURN t - 1 HOUR;
END | F

CREATE FUNCTI ON an_hour _before_or_now(t TI ME)
RETURNS TI ME
CASE t
WHEN > CURRENT_TI ME THEN
RETURN CURRENT_TI ME;
WHEN >= TI ME' 01: 00: 00" THEN
RETURN t - 1 HOUR;
ELSE
RETURN CURRENT_TI ME;
END CASE

It is perfectly possible to have different versions of the routine as SQL/JRT or SQL/PSM routines.

Returning Data From Procedures

The OUT or INOUT parameters of a PROCEDURE are used to assign simple values to dynamic parameters or to
variablesin the calling context.

According to the Standard, an SQL/PSM or SQL/JRT procedure may also return result sets to the calling context.
These result sets are dynamic in the sense that a procedure may return a different number of result setsor noneat all in
different invocations. The SQL Standard uses a mechanism called CURSORS for accessing and modifying rows of a
result set one by one. This mechanism is necessary when the database is accessed from an external application program.
The JDBC ResultSet interface allows this method of access from Java programs and is supported by HyperSQL.

HyperSQL support thismethod of returning single or multipleresult setsfrom SQL/PSM proceduresonly viathe JDBC
CallableStatement interface. Cursors are declared and opened within the body of the procedure. No further operationis
performed on the cursors within the procedure. When the execution of the procedure is complete, the cursors become
available as Java ResultSet objects via the CallableStatement instance that called the SQL/PSM procedure.

The JDBC CallableStatement class is used with the SQL statement CALL <routi ne name> (<argunent
1>, ...) tocal procedures(alsoto cal functions). After thecall to execute(), theget XXX() methods can be used
toretrieve INOUT or OUT arguments after thecall. Theget Mor eResul t s() method andtheget Resul t Set ()
method can be used to access the ResultSet(s) returned by a procedure that returns one or moreresults. If the procedure
returns more than one result set, the get Mor eResul t s() call movesto the next result.

In the example below, the procedure inserts a row into the customer table. It then performs the SELECT statement
to return the latest inserted row as a result set. Therefore, the definition includes the DYNAM C RESULT SETS 1
clause. Y ou must specify correctly the maximum number of result sets that the procedure may return.

CREATE PROCEDURE new_cust omner (firstnanme VARCHAR(50), | astname VARCHAR(50))
MODI FI ES SQL DATA DYNAM C RESULT SETS 1
BEG N ATOM C

176

HyperS@L SQL-Invoked Routines

I NSERT | NTO CUSTOMERS VALUES (DEFAULT, firstnane, |astnanme, CURRENT_TI MESTAMP);
DECLARE result CURSOR FOR SELECT * FROM CUSTOMERS WHERE | D = | DENTI TY();
OPEN resul t;

END

The above procedureis called in Javausing aCal | abl eSt at ement

Connection conn = ...;
Cal | abl eStat ement call = conn.prepareCall("call new custoner(?, ?)");
call.setString(1l, "Paul");
call.setString(2, "Smth");
cal |l . execute();
if (call.getMreResults()) // optional
Resul t Set result = call.getResultSet();

Alternatively,

Connection conn = ...;

Cal | abl eSt atement cal |l = conn. prepareCall ("call new custoner(?, ?)");
call.setString(1, "Paul");

call.setString(2, "Smth");

cal | . execute();

Resul t Set result = call.getResultSet();

Or in this case, where there is no OUT or INOUT parameter to be accessed after the call, execut eQuer y() can
be called

Connection conn = ...;

Cal | abl eSt at ement call = conn.prepareCall("call new custoner(?, ?)");
call.setString(1l, "Paul");

call.setString(2, "Smth");

Resul t Set result = call.executeQuery();

In the example below a procedure has one IN argument and two OUT arguments. The JDBC CallableStatement is
used to retrieve the values returned in the OUT arguments.

CREATE PROCEDURE get _customer (I N id INT, OUT firstname VARCHAR(50), QUT | astname VARCHAR(50))
READS SQL DATA
BEG N ATOM C
-- this statenment uses the id to get firstname and | ast nane
SELECT first_nane, |ast_nane |NTO firstnane, |astname FROM custoners WHERE cust_id = id;
END

Connection conn = ...;

Cal | abl eStatenment call = conn.prepareCall("call get_custoner(?, ?, ?2)");

call.setInt(1, 121); // only the IN (or INOUT) argunents should be set before the call

cal |l . execute();

String firstname = call.getString(2); // the OQUT (or |INOUT) argunents are retrieved after the
cal |

String lastname = call.getString(3);

SQL/JRT procedures are discussed in the Java Language Procedures section below. Those routines are called exactly
the same way as SQL/PSM procedures, using the JDBC CallableStatement interface.

Itisalso possibleto use a JDBC Statement or PreparedStatement object to call a procedure if the procedure arguments
are constant. If the procedure returnsone or moreresult sets, the St at enent . get Mor eResul t s() method should
be called before retrieving the ResultSet.

177

HyperS@L SQL-Invoked Routines

An SQL/JIRT or SQL/PSM function (as opposed to procedure) returns either avalue or atablein a ResultSet. Functions
arecalled from JDBC similar to procedures, but with functions, theget Mor eResul s() method should not be called
at al. Theget Resul Set () method is called after calling the execut e() method.

Recursive Routines

Routines can be recursive. Recursive functions are often functions that return arrays or tables. To create a recursive
routine, the routine definition must be created first with a dummy body. Then the ALTER ROUTINE statement is
used to define the routine body.

In the example below, the table contains atree of rows each with aparent. Theroutine returnsan array containing theid
list of al the direct and indirect children of the given parent. Theroutine appendsthearray variableid_list with theid of
each direct child and for each child appendsthe array with theid array of its children by calling the routine recursively.

Theroutine can be used in a SELECT statement as the example shows.

CREATE TABLE ptree (pid INT, id INT);
I NSERT | NTO ptree VALUES (NULL, 1) ,(1,2), (1,3),(2,4),(4,5),(3,6),(3,7);

-- the function is created and al ways throws an exception when used
CREATE FUNCTI ON child_arr(p_pid I NT) RETURNS | NT ARRAY

SPECI FI C chil d_arr_one

READS SQL DATA

SI GNAL SQLSTATE ' 45000'

-- the actual body of the function is defined, replacing the statenment that throws the exception
ALTER SPECI FI C ROUTI NE chi |l d_arr_one
BEG N ATOM C
DECLARE id_list |NT ARRAY DEFAULT ARRAY[];
for_l oop:
FOR SELECT id FROM ptree WHERE pid = p_pid DO
SET id_list[CARDI NALITY(id_list) + 1] =id;
SET id_list =id_list || child_arr(id);
END FOR for_| oop;
RETURN i d_list;
END

-- the function can now be used in SQ statenents
SELECT * FROM TABLE(child_arr(2))

In the next example, a table with two columns is returned instead of an array. In this example, alocal table variable
is declared and filled with the children and the children's children.

CREATE FUNCTI ON child_table(p_pid I NT) RETURNS TABLE(r_pid INT, r_id |INT)
SPECI FI C chi |l d_t abl e_one
READS SQ. DATA
SI GNAL SQLSTATE ' 45000'

ALTER SPECI FI C ROUTI NE chi |l d_t abl e_one
BEG N ATOM C
DECLARE TABLE child tree (pid INT, id INT);
for_I oop:
FOR SELECT pid, id FROM ptree WHERE pid = p_pid DO
I NSERT | NTO child_tree VALUES pid, id;
I NSERT | NTO child_tree SELECT r_pid, r_id FROM TABLE(child_table(id));
END FOR for_I oop;
RETURN TABLE(SELECT * FROM child_tree);
END

SELECT * FROM TABLE(chi | d_t abl e(1))

Infinite recursion is not possible as the routine is terminated when a given depth is reached.

178

HyperS@L SQL-Invoked Routines

Java Language Routines (SQL/JRT)

The general features of SQL-Invoked Routines are shared between PSM and JRT routines. These features are covered
in the previous section. This section deal s with specific aspects of JRT routines.

The body of a Javalanguage routine is a static method of a Java class, specified with afully qualified method name
in the routine definition. A smple CREATE FUNCTION exampleis given below, which defines the function to call
thej ava. | ang. Mat h. si nh(doubl e d) Javamethod. The function can be called in SQL statements just like
any built-in function.

CREATE FUNCTI ON si nh(v DOUBLE) RETURNS DOUBLE
LANGUAGE JAVA DETERM NI STI C NO SQL
EXTERNAL NAME ' CLASSPATH: j ava. | ang. Mat h. si nh’

SELECT si nh(doubl ecol utm) FROM nyt abl e

In the example below, the static method namedt oZer oPaddedSt r i ng is specified to be called when the function
isinvoked.

CREATE FUNCTI ON zero_pad(x BIGA NT, digits INT, maxsize |NT)
RETURNS CHAR VARYI NG(100)
LANGUAGE JAVA DETERM NI STI C NO SQL
EXTERNAL NAME ' CLASSPATH: org. hsql db.lib. StringUtil.toZeroPaddedString'

The signature of the Java method (used in the Java code but not in SQL code to create the function) is given below:

‘ public static String toZeroPaddedString(long value, int precision, int maxSize) ‘

The parameter and return types of the SQL routine definition must match those of the Java method according to the
table below:

SMALLINT short or Short
INT int or Integer
BIGINT long or Long
NUMERIC or DECIMAL BigDecimal

FLOAT or DOUBLE

double or Double

CHAR or VARCHAR String

DATE java.sgl.Date

TIME java.sgl.Time
TIMEWITH TIME ZONE javatime.OffsetTime
TIMESTAMP java.sgl. Timestamp

TIMESTAMPWITH TIME ZONE

javatime.OffsetDateTime

INTERVAL MONTH

javattime.Period

INTERVAL SECOND

javatime.Duration

BINARY bytef]
VARBINARY bytel]

BOOLEAN boolean or Boolean
ARRAY of any type java.sgl.Array
TABLE java.sgl.ResultSet

179

HyperS@L SQL-Invoked Routines

For OUT and INOUT parameters of procedures Java arrays of the type given in the table above should be used as
parameters For exampleif the OUT parameter is defined as VARCHAR(10), it matches a Java parameter type defined
asString[].

If the specified Java method is not found or its parameters and return types do not match the definition, an exception
israised. If more than one version of the Java method exists, then the one with matching parameter and return types
isfound and registered. If two “equivalent” methods exist, the first one is registered. (This situation arises only when
aparameter is a primitive in one version and an Object in another version, e.g. | ong andj ava. | ang. Long.).

When the Java method of an SQL/JRT routinereturns avalue, it should be within the size and precision limits defined
in the return type of the SQL-invoked routine, otherwise an exception is raised. Any difference in numeric scale is
ignored and corrected. For example, in the above example, the RETURNS CHAR VARYI NG 100) clause limitsthe
length of the strings returned from the Java method to 100. But if the number of digits after the decimal point (scale) of
areturned BigDecimal valueislarger than the scale specified in the RETURNS clause, the decimal fraction issilently
truncated and no exception of warning is raised.

When the function is specified as RETURNS TABLE(...) the static Java method should return a JDBCResultSet
instance. For an example of how to construct a JDBCResul t Set for this purpose, see the source code for the
org. hsql db. j dbc. JDBCAr r ay class.

Polymorphism

If two versions of the same SQL invoked routine with different parameter types are required, they can be defined to
point to the same method name or different method names, or even methodsin different classes. In the example below,
the first two definitions refer to the same method name in the same class. In the Java class, the two static methods are
defined with corresponding method signatures.

In the third example, the Java function returns aresult set and the SQL declaration includes RETURNS TABLE.

CREATE FUNCTI ON an_hour _before_or_now(t TI ME)
RETURNS TI ME
NO SQL
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME ' CLASSPATH: or g. npo. | i b. nowLessAnHour"'

CREATE FUNCTI ON an_hour _before_or_now(t TI MESTAMP)
RETURNS TI MESTAMP
NO SQL
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME ' CLASSPATH: or g. npo. | i b. nowLessAnHour"'

CREATE FUNCTI ON testquery(i | NTEGER)
RETURNS TABLE(n VARCHAR(20), i |NT)
READS SQL DATA
LANGUAGE JAVA
EXTERNAL NAME ' CLASSPATH: or g. hsql db. t est . Test JavaFuncti ons. get QueryResul t'

In the Java class the definitions are as follows. Note the definition of the get Quer yResul t () method beginswith
aj ava. sgl . Connect i on parameter. This parameter is ignored when choosing the Java method. The parameter
is used to pass the current JIDBC connection to the Java method.

public static java.sql.Time nowLessAnHour (j ava. sql . Ti me val ue) {

}

public static java.sql.Ti mestanp nowLessAnHour (j ava. sql . Ti mest anp val ue)

}

180

HyperS@L SQL-Invoked Routines

public static ResultSet getQueryResult(Connection connection, int i) throws SQ.Exception {
Statenent st = connection.createStatenent();
return st.executeQuery("SELECT * FROM T WHERE | < " + i);

Java Language Procedures

Java procedures are defined similarly to functions. The differences are:
» Thereturn type of the Java static method must be void.

 If aparameter is defined as OUT or INOUT, the corresponding Java static method parameter must be defined as
an array of the JIDBC non-primitive type.

When the Java static method isinvoked, the OUT and INOUT arguments are passed to the Java method as asingle-
element array.

» Thestatic method can modify the OUT or INOUT argument by assigning avalueto the sole element of the argument
array.

A procedure can return one or more result sets. These are instantiated as JDBC ResultSet objects by the Java static
and returned in array arguments of the method. The signature of the Javamethod for aprocedure that has N declared
parameters and returns M result sets has the following pattern. The N parameters corresponding to the signature of
the declared SQL procedure are defined first, followed by M parameters as ResultSet arrays.

When the SQL procedure is executed, the Java method is called with single element array arguments passed
for OUT and INOUT SQL parameters, and single element arrays of ResultSet for the returned ResultSet
objects. The Java method may call the execut e() or execut eQuery() methods of JDBC Statement or
PreparedStatement objects that are declared within the method and assign the ResultSet objects to the first element
of each ResultSet[] argument. For the returned ResultSet objects, the Java method should not call the methods of
j ava. sgl . Resul t Set before returning.

voi d net hodNane(<argl>, ... <argN>, ResultSet[] r1, ..., ResultSet[] rM

« If the procedure contains SQL statements, only statements for data access and manipulation are allowed. The Java
method should not perform commit or rollback. The SQL statements should not change the session settings and
should not include statements that create or alter tables or other database objects. These rules are generally enforced
by the engine, but additional enforcement may be added in future versions

An example of aprocedure definition, together with its Java signature, is given below. This procedure isthe SQL/JRT
version of the example discussed above for SQL/PSM.

CREATE PROCEDURE get _custonmer (I N id INT, OUT firstname VARCHAR(50), QOUT | astnanme VARCHAR(50))
READS SQ. DATA
LANGUAGE JAVA
EXTERNAL NAME ' CLASSPATH: or g. hsql db. t est . Test 01. get Cust oner Pr ocedur €'

public static void getCustonerProcedure(int id, String[] firstn, String[] |astn)
throws java.sql.SQLException {
firstn[0] = sonevalue; // paranmeter out value is assigned
lastn[0] = soneval ue; /| paraneter out value is assigned

In the next example a procedure is defined to return aresult set. The signature of the Java method is aso given. The
Java method assigns a ResultSet object to the zero element of the result parameter. The result parameter is always the
last one and is declared after the normal IN and OUT parameters.

181

HyperS@L SQL-Invoked Routines

CREATE PROCEDURE new_cust oner (firstnane VARCHAR(50), | astname VARCHAR(50))
MODI FI ES SQL DATA
LANGUAGE JAVA
DYNAM C RESULT SETS 1
EXTERNAL NAME ' CLASSPATH: or g. hsql db. t est . Test 01. newCust oner Pr ocedur €'

public static void newCustonerProcedure(String firstn, String |astn,
Resul t Set[] result) throws java.sql.SQ.Exception {
result[0] = soneresultset; // dynamic result set is assigned

You may want to return your own data in the ResultSet that is returned from an SQL/JRT procedure or
function. Theor g. hsql db. j dbc. JDBCResul t Set has two static factory methods that return instances of the
JDBCResul t Set Basi ¢ class. Refer to the source code to see how you can usethisclassin your Javastatic methods.
Youcanusetheor g. hsql db. j dbc. JDBCAr r ayBasi c classto createaJDBC Array in your Java static method.
This class also includes code to construct aJDBCResul t Set Basi ¢ instance.

Java language procedures SQL/JRT are used in an identical manner to SQL/PSM routines. See the section under
SQL/PSM routines, Returning Data From Procedures, on how to use the JDBC CallableStatement interface to call the
procedure and to get the OUT and INOUT arguments and to use the ResultSet objects returned by the procedure.

Java Static Methods

The static methods that are used for procedures and functions must be declared in a public class. The methods must
be declared as public static. For functions, the method return type must be one of the JIDBC supported types. The IN
parameters of the method must be declared as one of the supported types. The OUT and INOUT parameters must
be declared as Java arrays of supported types. If the SQL definition of a function includes RETURNS NULL ON
NULL INPUT, then the IN parameters of the Java static function can be int or long primitives, otherwise, they must
be Integer or Long. The declared Java arrays for OUT and INOUT parameters for SQL INTEGER or BIGINT must
be Integer[] or Long[] respectively.

If the SQL definition of the routine includes NO SQL, then no JDBC method call is allowed to execute in the method
body. Otherwise, a JDBC Connection can be used within the Java method to access the database. If the definition
includes CONTAINS SQL, then no table data can be read. If the definition includes READS SQL DATA, then no
table data can be modified. If the definition includes MODIFIES SQL DATA, then data can be modified. In all modes,
it is not allowed to execute DDL statements that change the schema definition.

Itispossible to use DECLARE LOCAL TEMPORARY TABLE in aJavamethod, asthisisin the session scope.
There are two ways to use the JIDBC Connection object.

1. Define the Java method with a Connection parameter as the first parameter. This parameter is "hidden" and only
visible to the engine. The rest of the parameters, if any, are used to choose the method according to the required
types of parameters.

2. Use the SQL/JRT Standard " j dbc: def aul t : connecti on" method. With this approach, the Java method
does not include a Connection parameter. In the method body, the connection is established with a method call to
DriverManager, as in the example below:

Connection con = Driver Manager. get Connecti on("j dbc: def aul t: connection");

Both methods return a connection that is based on the current on. This connection has some extra properties, for
example, the Close() method does not actualy closeit.

An example of an SQL PROCEDURE with its Java method definition is given below. The CREATE PROCEDURE
statement is the same with or without the Connection parameter:

182

HyperS@L SQL-Invoked Routines

CREATE PROCEDURE procl(IN P1 INT, IN P2 |NT, OUT P3 |NT)
SPECI FI C P2 LANGUAGE JAVA DETERM NI STI C MODI FI ES SQL DATA EXTERNAL NAME
' CLASSPATH: or g. hsql db. t est . Test St or edProcedure. procTest2'");

In the first example, the " j dbc: def aul t : connect i on" method is used. In the second example, a connection
parameter is used

public static void procTest2(int pl, int p2,
Integer[] p3) throws java.sql.SQ.Exception {

Connection conn =
Dri ver Manager . get Connecti on("j dbc: def aul t: connecti on");
java.sqgl.Statenent stnt = conn.createStatenent();

stnt.execut ("I NSERT | NTO MYTABLE VALUES(" + pl + ",'test1')"):
stnt. execut ("I NSERT | NTO MYTABLE VALUES(" + p2 + ",'test2')"):

java.sqgl.ResultSet rs = stnt.executeQuery("select * from MYTABLE");
java. sqgl . Resul t Set et aData neta = rs. get MetaData();

int cols = neta.get Col umCount();
p3[0] = Integer.valueX(cols);
rs.close();

stnt.cl ose();

}

/1 alternative declaration with Connection paraneter
/1 public static void procTest2(Connection conn, int pl, int p2,
/1 Integer[] p3) throws java.sql.SQ.Exception {

When the stored procedure is called by the user's program, the value of the OUT parameter can be read after the call.

/] a CallableStatenent is used to prepare the call

/1 the OUT paraneter contains the return val ue

Cal | abl eStatenment ¢ = conn. prepareCal |l ("call procl(1,2,?)");
c.execute();

int value = c.getInt(1);

Legacy Support

The legacy HyperSQL statement, CREATE ALI AS <name> FOR <fully qualified Java nethod
nanme> isno longer supported directly. It is supported when importing databases and translates to a special CREATE
FUNCTI ON <nane> statement that creates the function in the PUBLIC schema.

The direct use of a Java method as a function is still supported but deprecated. It is internally trandated to a special
CREATE FUNCTI ON statement where the name of the function is the double quoted, fully qualified name of the
Java method used.

Securing Access to Classes and Routines

By default, the static methods of any classthat ison the classpath are availableto be used. Thiscan compromise security
in some systems. The optional Javasystem property hsql db. net hod_cl ass_nanes alows preventing accessto
classes other than j ava. | ang. Mat h or specifying a semicolon-separated list of allowed classes. A property value
that ends with .* is treated as a wild card and allows access to all class or method names formed by substitution of
the* (asterisk).

In the example below, the property has been included as an argument to the Java command.

java -Dhsgl db. net hod_cl ass_nanes="or g. ne. Myd ass; or g. you. Your d ass; org.you.lib.*" [the rest of
the command | i ne]

183

HyperS@L SQL-Invoked Routines

The above example allows access to the methods in the two classes. org. ne. MyCl ass and
or g. you. Your C ass together with all theclassesintheor g. you. | i b package. Note that if the property is not
defined, no access control is performed at this level.

The user who creates a Java routine must have the relevant access privileges on the tables that are used inside the
Java method.

Once the routine has been defined, the normal database access control appliesto its user. The routine can be executed
only by those userswho have been granted EXECUTE privilegesonit. Accessto routines can be granted to users with
GRANT EXECUTE or GRANT ALL. For example, GRANT EXECUTE ON nyrouti ne TO PUBLIC.

Warning

The definition of SQL/JRT routinesreferencing the user's Java static methodsis stored in the .script file of the database.

If the database is opened in a Java environment that does not have access to the referenced Java static methods on
its classpath, the SQL/JRT routines are not created when the database is opened. When the database is closed, the
routine definitions are lost.

Thereisaworkaround to prevent opening the database when the static methods are not on the classpath. Y ou can create
an SQL/PSM procedure which callsal the SQL/JRT functions and proceduresin your database. The calls should have
the necessary dummy arguments. This procedurewill fail to be created when the referenced methods are not accessible
and will return "Error in script file". Thereisno need ever to execute the procedure. However, to avoid accidental use,
you can ensure that it does not execute the SQL/JRT routines by adding alinesuchas| F TRUE THEN S| GNAL
SQLSTATE ' 45000’ ; before any references to the SQL/JRT routines.

User-Defined Aggregate Functions

HyperSQL adds an extension to the SQL Standard to allow user-defined aggregate functions. A user-defined aggregate
function has a single parameter when it is used in SQL statements. Unlike the predefined aggregate functions, the
keyword DISTINCT cannot be used when auser-defined aggregate functionisinvoked. Likeall user-defined functions,
an aggregate function belongs to a schema and can be polymorphic (with multiple function definitions with the same
name but different parameter types).

A user-defined aggregate function can be used in SQL statements where a predefined aggregate function is allowed.

Definition of Aggregate Functions

An aggregate function is always defined with 4 parameters. The first parameter is the parameter that is used when
the function isinvoked in SQL statements, the rest of the parameter are invisible to the invoking SQL statement. The
type of thefirst parameter is user defined. The type of the second parameter must be BOOLEAN. The third and fourth
parameters have user-defined types and must be defined as INOUT parameters. The defined return type of the function
determines the type of the value returned when the function is invoked.

CREATE AGGREGATE FUNCTION
user defined aggregate function definition

Aggregate function definition is similar to normal function definition and has the mandatory <r et ur ns cl ause>.
The BNF is given below.

<user defined aggregate function> ::= CREATE AGGREGATE FUNCTI ON <schema qual i fi ed
routine nanme> <SQ. aggregate paraneter declaration list> <returns clause>
<routine characteristics> <routine body>

184

HyperS@L SQL-Invoked Routines

The parameter declaration list BNF isgiven below. Thetype of thefirst parameter is used when thefunction isinvoked
as part of an SQL statement. When multiple versions of a function are required, each version will have the first
parameter of adifferent type.

<SQ. aggregate declaration list> ::=<left paren>[IN [<SQ paraneter nane>]
<paraneter type> <comma> [IN [<SQ paranmeter name>] BOOLEAN <conma> | NOUT
[<SQL paraneter nanme>] <paraneter type> <comma> | NOUT [<SQ. par aneter nane>]
<paraneter type> <right paren>

Thereturn typeisuser defined. Thisisthetype of the resulting value when the functionis called. Usually an aggregate
function is defined with CONTAINS SQL, asit normally does not read the data in database tables, but it is possible
to define the function with READS SQL DATA and access the database tables.

When a SQL statement that uses the aggregate function is executed, HyperSQL invokes the aggregate function, with
all the arguments set, once per each row in order to compute the values. Finaly, it invokes the function once more
to return the fina result.

In the computation phase, the first argument is the value of the user argument as specified in the SQL statement,
computed for the current row. The second argument is the boolean FAL SE. The third and fourth argument values can
have any type and areinitially null, but they can be updated in the body of the function during each invocation. The
third and fourth arguments act as registers and hold their values between invocations. The return value of the function
isignored during the computation phase (when the second parameter is FALSE).

After the computation phase, the function is invoked once more to get the final result. In this invocation, the first
argument is NULL and the second argument is boolean TRUE. The third and fourth arguments hold the values they
held at the end of the last invocation. The value returned by the function in thisinvocation is used as the result of the
aggregate function computation in the invoking SQL statement. In SQL queries with GROUP BY, the call sequence
is repeated separately for each separate group.

SQL PSM Aggregate Functions

The example below features a user-defined version of the Standard AVE <val ue expressi on>) aggregate
function for INTEGER input and output types. This function behaves differently from the Standard AV G function as
it returns O when all the input values are null.

CREATE AGGREGATE FUNCTI ON udavg(! N x I NTEGER, | N flag BOOLEAN, | NOUT addup BI G NT, | NOUT counter
| NT)
RETURNS | NTEGER
CONTAI NS SQL
BEG N ATOM C
IF flag THEN
RETURN addup / counter;
ELSE
SET counter = COALESCE(counter, 0) + 1;
SET addup = COALESCE(addup, 0) + COALESCE(x, 0);
RETURN NULL;
END | F;
END

The user-defined aggregate function is used in a select statement in the example below. Only the first parameter is
visible and utilised in the select statement.

‘ SELECT udavg(id) FROM custonmers GROUP BY | ast nane; ‘

In the example below, the function returns an array that contains all the values passed for the aggregated column. For
use with longer arrays, you can optimise the function by defining a larger array in the first iteration, and using the

185

HyperS@L SQL-Invoked Routines

TRIM_ARRAY functiononthe RETURN to cut thearray to size. Thisfunctionissimilar tothebuilt-in ARRAY _AGG
function

CREATE AGCGREGATE FUNCTI ON array_aggregate(l N val VARCHAR(100), IN flag bool ean, | NOUT buffer
VARCHAR(100) ARRAY, | NOUT counter | NT)
RETURNS VARCHAR(100) ARRAY
CONTAI NS SQL
BEG N ATOM C
IF flag THEN
RETURN buf fer;
ELSE
I'F val I'S NULL THEN RETURN NULL; END IF;
I'F counter I'S NULL THEN SET counter = 0; END IF;
SET counter = counter + 1;
I F counter = 1 THEN SET buffer = ARRAY[val];
ELSE SET buffer[counter] = val; END IF;
RETURN NULL;
END | F;
END

The tables and data for the select statement below are created with the DatabaseM anager or DatabaseM anagerSwing
GUI apps. (Y ou can find the SQL in the TestSelf.txt filein the zip). Part of the output is shown. Each row of the output
includes an array containing the values for the invoices for each customer.

SELECT | D, FI RSTNAME, LASTNAME, ARRAY_AGGREGATE(CAST(| NVO CE. TOTAL AS VARCHAR(100)))
FROM custonmer JO N I NVO CE ON | D =CUSTOVERI D
GROUP BY I D, FI RSTNAMVE, LASTNAME

11 Susanne Kar sen ARRAY[' 3988. 20']

12 John Pet erson ARRAY[' 2903.10','4382.10',"'4139.70',"'3316.50']
13 M chael Cl ancy ARRAY[' 6525. 30']

14 Janes Ki ng ARRAY[' 3665. 40" , ' 905. 10' , ' 498. 00']

18 Sylvia d ancy ARRAY[' 634. 20", ' 4883. 10']

20 Bob d ancy ARRAY[' 3414.60' ,"' 744.60']

In the example below, the function returns a string that contains the comma-separated list of all the values passed for
the aggregated column. This function is similar to the built in GROUP_CONCAT function.

CREATE AGGREGATE FUNCTI ON gr oup_concat enat e
(I'N val VARCHAR(100), IN flag BOOLEAN, | NOUT buffer VARCHAR(1000), | NOUT counter |NT)
RETURNS VARCHAR(1000)

CONTAI NS SQL
BEG N ATOM C

| F FLAG THEN
RETURN BUFFER;

ELSE
I'F val I'S NULL THEN RETURN NULL; END | F;
IF buffer IS NULL THEN SET BUFFER = ''; END | F;
I F counter I'S NULL THEN SET COUNTER = 0; END I|F;
| F counter > 0 THEN SET buffer = buffer || ','; END IF;

SET buffer = buffer + val;
SET counter = counter + 1,
RETURN NULL;
END | F;
END

The same tables and data as for the previous example is used. Part of the output is shown. Each row of the output is
acomma-separated list of names.

SELECT group_concatenate(firstname || ' ' || |astnane) FROM custoner GROUP BY | ast nane

Laura Steel, John Steel,John Steel, Robert Steel
Robert Ki ng, Robert King, Janes Ki ng, George King, Julia King, George King
Robert Sonmer, Janet Sonmer

186

HyperS@L SQL-Invoked Routines

M chael Snmith, Anne Snith, Andrew Snith

Bi Il Fuller, Anne Fuller

Laura Wiite, Sylvia Wite

Susanne C ancy, M chael d ancy, Syl via d ancy, Bob d ancy, Susanne d ancy, John C ancy

Java Aggregate Functions

A Java aggregate function is defined similarly to PSM functions, apart from the routine body, which is defined as
EXTERNAL NAME ... TheJavafunction signature must follow the rulesfor both nullable and INOUT parameters,
therefore:

No argument isdefined asaprimitive or primitive array type. Thisallows nullsto be passed to the function. The second
and third arguments must be defined as arrays of the JDBC non-primitive types listed in the table in the previous
section.

In the example below, a user-defined aggregate function for geometric mean is defined.

CREATE AGGREGATE FUNCTI ON geonetric_nean(l N val DOUBLE, |IN flag BOOLEAN, | NOUT register DOUBLE,
I NOUT count er | NT)

RETURNS DOUBLE

NO SQL

LANGUAGE JAVA

EXTERNAL NAME ' CLASSPATH: or g. hsql db. t est . Test 01. geonetri cMean'

The Javafunction definition is given below:

public static Doubl e geonetri cMean(Doubl e in, Boolean flag,
Doubl e[] register, Integer[] counter) {
if (flag) {
if (register[0] == null) { return null; }
doubl e a = register[0].doubl eVal ue();
double b = 1 / (double) counter[O0];
return Doubl e. val ueO (j ava. | ang. Mat h. pow(a, b));

if (in==null) { return null; }
if (in.doubleValue() == 0) { return null; }
if (register[0] == null) {
register[0] = in;
counter[0] = Integer.valueO(1);
} else {
regi ster[0] = Doubl e.val ueOr (regi ster[0].doubl eVal ue() * in.doubleValue());
counter[0] = Integer.valueO (counter[0].intValue() + 1);
return null;

}

In aselect statement, the function is used exactly like the built-in aggregate functions:

‘ SELECT geonetric_nean(age) FROM FROM cust oner

187

HyperS@L

Chapter 9. Triggers

Fred Toussi, The HSQL Development Group
$Revision: 3042 $

Copyright 2010-2020 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.

2020-06-29

Overview

Trigger functionality first appeared in SQL:1999. Triggers embody the live database concept, where changes in SQL
datacan be monitored and acted upon. ThismeanseachtimeaDELETE, UPDATE or INSERT isperformed, additional
actions are taken by the declared triggers. SQL Standard triggers are imperative while the relational aspects of SQL
are declarative. Triggers allow performing an arbitrary transformation of data that is being updated or inserted, or to
prevent insert, updated or deletes, or to perform additional operations.

Some bad examples of SQL triggers in effect enforce an “integrity constraint” which would better be expressed as a
CHECK constraint. A trigger that causes an exception if the value inserted in acolumn is negative is such an example.
A check constraint that declares CHECK VALUE >= 0 (declarative) is a better way of expressing an integrity
constraint than atrigger that throws an exception if the same condition isfalse.

Usage constraints cannot always be expressed by SQL’s integrity constraint statements. Triggers can enforce these
constraints. For example, it is not possible to use a check constraint to prevent datainserts or deletes on weekends. A
trigger can be used to enforce the time when each operation is alowed.

A trigger isdeclared to activate when an UPDATE, INSERT or DELETE action is performed on atable. These actions
may be direct or indirect. Indirect actions may arise from CASCADE actions of FOREIGN KEY constraints, or from
data change statements performed on a VIEW that is based on the table that in.

It is possible to declare multiple triggers on a single table. The triggers activate one by one according to the order in
which they were defined. HyperSQL supports an extension to the CREATE TRIGGER statement, which allows the
user to specify the execution order of the new trigger.

A row level trigger allows access to the deleted or inserted rows. For UPDATE actions there is both an old and new
version of each row. A trigger can be specified to activate before or after the action has been performed.

BEFORE Triggers

A trigger that is declared as BEFORE DELETE cannot modify the deleted row. In other words, it cannot decide to
delete a different row by changing the column values of the row. A trigger that is declared as BEFORE INSERT and
BEFORE UPDATE can modify the values that are inserted into the database. For example, a badly formatted string
can be cleaned up by atrigger before INSERT or UPDATE.

BEFORE triggers cannot modify the other tables of the database. All BEFORE triggers can veto the action by throwing
an exception.

Because BEFORE triggers can modify the inserted or updated rows, all constraint checks are performed after the
execution of the BEFORE triggers. The checksinclude NOT NULL constraints, length of strings, CHECK constraints,
and FOREIGN key constraints.

188

HyperS@L Triggers

AFTER Triggers

AFTER triggers can perform additional data changes, for exampleinserting an additional row into adifferent table for
dataaudits or logs. Thesetriggers cannot modify the rowsthat have been modified by the INSERT or UPDATE action.

INSTEAD OF Triggers

A trigger that is declared on a VIEW, isan INSTEAD OF trigger. This term means when an INSERT, UPDATE or
DELETE statement is executed with the view as the target, the trigger action is al that is performed, and no further
data change takes place on the view. The trigger action can include all the statements that are necessary to change
the data in the tables that underlie the view, or even other tables, such as audit tables. With the use of INSTEAD OF
triggers aread-only view can effectively become updatable or insertable-into.

An example of INSTEAD OF TRIGGERS is one that performsan INSERT, UPDATE or DELETE on multiple tables
that are used in the view.

Trigger Properties

A trigger is declared on a specific table or view. Various trigger properties determine when the trigger is executed
and how.

Trigger Event

The trigger event specifies the type of SQL statement that causes the trigger to execute. Each trigger is specified to
execute when an INSERT, DELETE or UPDATE takes place.

The event can be filtered by two separate means. For all triggers, the WHEN clause can specify a condition against
the rows that are the subject of the trigger, together with the data in the database. For example, atrigger can activate
when the size of a table becomes larger than a certain amount. Or it can activate when the values in the rows being
modified satisfy certain conditions.

An UPDATE trigger can be declared to execute only when certain columns are the subject of an update statement. For

example, atrigger declared as AFTER UPDATE OF (datecolumn) will activate only when the UPDATE statement
that is executed includes the column, datecolumn, as one of the columns specified inits SET statements.

Granularity

A statement level trigger is performed once for the executed SQL statement and is declared as FOR EACH
STATEMENT.

A row level trigger is performed once for each row that is modified during the execution of an SQL statement and is
declared as FOR EACH ROW. Note that an SQL statement can INSERT, UPDATE or DELETE zero or more rows.

If a statement does not apply to any row, then the trigger is not executed.
If FOR EACH ROW or FOR EACH STATEMENT is not specified, then the default is FOR EACH STATEMENT.

The granularity dictates whether the REFERENCING clause can specify OLD ROW, NEW ROW, or OLD TABLE,
NEW TABLE.

A trigger declared as FOR EACH STATEMENT can only be an AFTER trigger. These triggers are useful for logging
the event that was triggered.

189

HyperS@L Triggers

Trigger Action Time

A trigger is executed BEFORE, AFTER or INSTEAD OF the trigger event.

INSTEAD OF triggers are allowed only when the trigger is declared on a VIEW. With this type of trigger, the event
(SQL statement) itself is not executed, only the trigger.

BEFORE or AFTER triggers are executed just before or just after the execution of the event. For example, just before
arow isinserted into a table, the BEFORE trigger is activated, and just after the row is inserted, the AFTER trigger
is executed.

BEFORE triggers can modify the row that is being inserted or updated. AFTER triggers cannot modify rows. They
are usually used to perform additional operations, such asinserting rows into other tables.

A trigger declared as FOR EACH STATEMENT can only be an AFTER trigger.

References to Rows

If the old rows or new rows are referenced in the SQL statements in the trigger action, they must have names. The
REFERENCING clause is used to give names to the old and new rows. The clause, REFERENCING OLD | NEW
TABLE is used for statement level triggers. The clause, REFERENCING OLD | NEW ROW is used for row level
triggers. If the old rows or new rows are referenced in the SQL statementsin the trigger action, they must have names.
In the SQL statements, the columns of the old or new rows are qualified with the specified names.

Trigger Condition

The WHEN clause can specify acondition for the columns of the row that is being changed. Using this clause you can
simply avoid unnecessary trigger activation for rows that do not need it.

For UPDATE trigger, you can specify alist of columnsof thetable. If alist of columnsis specified, thenif the UPDATE
statement does not change the columns with SET clauses, then the trigger is not activated at all.

Trigger Action in SQL

The trigger action specifies what the trigger does when it is activated. This is usually written as one or more SQL
Statements.

When arow leve trigger isactivated, thereisan OLD ROW, or aNEW ROW, or both. An INSERT statement supplies
aNEW ROW row to beinserted into atable. A DELETE statement supplies an OLD ROW be deleted. An UPDATE
statement supplies both OLD ROW and NEW ROW that represent the updated rows before and after the update. The
REFERENCING clause gives names to these rows, so that the rows can be referenced in the trigger action.

In the example below, a name is given to the NEW ROW and it is used both in the WHEN clause and in the trigger
action SQL to insert arow into atriglog table after each row insert into the testtrig table.

CREATE TRIGGER trig AFTER | NSERT ON testtrig
REFERENCI NG NEW ROW AS newr ow
FOR EACH ROW WHEN (newrow.id > 1)
I NSERT | NTO TRI GLOG VALUES (new ow.id, newow. data, 'inserted')

In the example blow, the trigger code modifies the updated data if a condition is true. This type of trigger is useful
when the application does not perform the necessary checks and modificationsto data. The statement block that starts
with BEGIN ATOMIC is similar to an SQL/PSM block and can contain al the SQL statements that are allowed in
an SQL/PSM block.

‘ CREATE TRI GGER t BEFORE UPDATE ON cust oner

190

HyperS@L Triggers

REFERENCI NG NEW AS newr ow FOR EACH ROW
BEG N ATOM C
I F LENGTH(newr ow. fi rstnane) > 10 THEN
SET newr ow. firstnane = LOAER(new ow. fir st nane);
END | F;
END

Trigger Action in Java

A trigger action can be written as a Java class that implements the or g. hsql db. t ri gger. Tri gger interface.
Thisinterface hasasingle method whichiscalled when thetrigger isactivated, either beforeor after the event. Whenthe
method is called by the engine, it suppliesthe type of trigger asan int value defined by the interface(as type argument),
the name of the trigger (as trigName argument), the name of the table (as tabName argument), the OLD ROW (as
oldRow argument) and the NEW ROW (as newRow argument). The oldRow argument is null for row level INSERT
triggers. The newRow argument is null for row level DELETE triggers. For table level triggers, both arguments are
null (that is, thereis no accessto the data). The triggerType argument is one of the constantsin the org.hsgldb. Trigger
interface which indicate the type of trigger, for example, INSERT_BEFORE_ROW or UPDATE_AFTER_ROW.

The Java class for the trigger can be reused for several triggers on different tables. The method code can distinguish
between the different tables and triggers using the supplied arguments and take appropriate action.

‘fire (int type, String tabNane, String table, Object oldRow], Object newRow]) ‘

The Javamethod for a synchronous trigger (see below) can modify the valuesin newRow in a BEFORE trigger. Such
modifications are reflected in the row that is being inserted or updated. Any other modifications are ignored by the
engine.

A Java trigger that uses an instance of org. hsql db. tri gger. Tri gger has two forms, synchronous, or
asynchronous (immediate or queued). By default, or when QUEUE 0 is specified, the action is performed immediately
by calling the Javamethod. Thisis similar to SQL trigger actions.

When QUEUE n is specified with n larger than O, the engine uses a separate thread to execute the Java method, using
a queue with the size n. For certain applications, such as real-time systems this allows asynchronous natifications to
be sent by the trigger event, without introducing delays in the engine. With asynchronous triggers, an extra parameter,
NOWAIT can be used in trigger definition. This overcomes the queue full condition. In this mode, old cals that are
till in the queue are discarded one by one and replaced with new calls.

Javarow level triggers that are declared with BEFORE trigger action time can modify the row data. Triggers with
AFTER trigger action time can modify the database, e.g. insert new rows. If the trigger needs to access the database,
the same method as in Java Language Routines SQL/JRT can be used. The Java code should connect to the URL
"j dbc: defaul t: connecti on" and use this connection to access the database.

For sample trigger classes and test code see, org.hsqldb. sanple. Trigger Sanpl e,
org. hsql db. test. Test Tri ggers, org. hsqgl db. test. Tri gger ass and the associated text script
Test Tri ggers.txt inthe/testrun/ hsql db/ directory. In the example below, the trigger is activated only
if the update statement includes SET clauses that modify any of the specified columns (c1, c2, c3). Furthermore, the
trigger is not activated if the c2 column in the updated row is null.

CREATE TRI GGER TRI GBUR BEFORE UPDATE OF c1, c2, c3 ON testtrig
referenci ng NEW ROW AS newr ow
FOR EACH ROW WHEN (new ow.c2 | S NOT NULL)
CALL "org. hsqgl db.test. Tri ggerd ass"

Java functions can be called from an SQL trigger. So it is possible to define the Java function to perform any external
communication that are necessary for the trigger, and use SQL code for checks and alterations to data.

| CREATE TRI GGER t BEFORE UPDATE ON cust omer |

191

HyperS@L Triggers

REFERENCI NG NEW AS newr ow FOR EACH ROW
BEG N ATOM C
I F LENGTH(newr ow. fi rstnane) > 10 THEN
CALL ny_j ava_function(new ow. firstnane, new ow. | ast nane);
END | F;
END

Trigger Creation

CREATE TRIGGER
trigger definition

<trigger definition> ::= CREATE TRI GGER <trigger nanme> <trigger action tine>
<trigger event> ON <table nane> [BEFCRE <other trigger name>] [REFERENCI NG
<transition table or variable list>] <triggered action>

<trigger action tine> ::= BEFORE | AFTER | | NSTEAD OF

<trigger event> ::= INSERT | DELETE | UPDATE [OF <trigger colum list>]
<trigger colum list> ::= <colum nanme |ist>

<triggered action> ::= [FOR EACH { ROW | STATEMENT }] [<triggered when
clause>] <triggered SQ statenent>

<triggered when clause> ::= WHEN <l eft paren> <search condition> <right paren>
<triggered SQL statement> ::= <SQ. procedure statenent> | BEG N ATOM C { <SQL

procedure statenment> <semicolon> }... END | [QUEUE <integer literal>] [NOMIT]
CALL <HSQLDB trigger class FQ\>

<transition table or variable list> ::= <transition table or variable>. ..

<transition table or variable> ::= OLD[RON] [AS] <old transition variable
nane> | NEW[ROW] [AS] <new transition variable name> | OLD TABLE [AS]
<old transition table name> | NEWTABLE [AS] <new transition table name>

<old transition table nane> ::= <transition table nane>
<new transition table nanme> ::= <transition table nane>
<transition table nane> ::= <identifier>

<old transition variable nanme> ::= <correl ati on name>
<new transition variable name> ::= <correl ati on nane>

Trigger definition is a relatively complex statement. The combination of <tri gger action tinme> and
<trigger event > determinesthe type of the trigger. Examples include BEFORE DELETE, AFTER UPDATE,
INSTEAD OF INSERT. If theoptional [OF <trigger columm |ist>] isspecifiedforan UPDATE trigger,
then the trigger is activated only if one of the columnsthat isinthe <t ri gger colum | i st > is specifiedin
the UPDATE statement that activates the trigger.

If atrigger isFOR EACH ROW whichisthe default option, then thetrigger isactivated for each row of thetablethat is
affected by the execution of an SQL statement. Otherwise, it is activated once only per statement execution. For FOR
EACH ROWtriggers, thereisan OLD and NEW state for each row. For UPDATE triggers, both OLD and NEW states

192

HyperS@L Triggers

exist, representing the row before the update, and after the update. For DELETE, triggers, thereis only an OLD state.
For INSERT triggers, thereis only the NEW state. If atrigger isFOR EACH STATEMENT, then atransient tableis
created containing all the rows for the OLD state and ancther transient table is created for the NEW state.

The[REFERENCI NG <transition table or variabl e>] isusedtogiveanametothe OLD and NEW
datarow or table. This name can be referenced inthe<SQL pr ocedur e st at enent > to access the data.

Theoptional <t ri gger ed when cl ause> isasearch condition, similar to the search condition of a DELETE or
UPDATE statement. If the search condition is not TRUE for arow, then the trigger is not activated for that row.

The<SQL procedure statenent >islimited to INSERT, DELETE, UPDATE and MERGE statements.

The<HSQLDB trigger class FQ\>isaddimited identifier that contains the fully qualified name of a Java
classthat implementstheor g. hsql db. Tri gger interface.

Early releases of HyperSQL version 2.x did not allow the use of OLD TABLE or NEW TABLE in statement level
triggers.

TRIGGERED SQL STATEMENT
triggered SQL statement
The <triggered SQL st at enent > hasthreeforms.

The first form is a single SQL procedure statement. This statement can reference the OLD ROW and NEW ROW
variables. For example, it can reference these variables and insert arow into a separate table.

The second form is enclosed in a BEGIN ... END block and can include one or more SQL procedure statements. In
BEFORE triggers, you can include SET statements to modify the inserted or updated rows. In AFTER triggers, you
can include INSERT, DELETE and UPDATE statements to change the data in other database tables. SELECT and
CALL statements are allowed in BEFORE and AFTER triggers. CALL statements in BEFORE triggers should not
modify data.

The third form specifies a call to a Java method.

Two examples of a trigger with a block are given below. The block can include elements discussed in the SQL-
Invoked Routines chapter, including local variables, loops and conditionals. Y ou can aso raise an exception in such
blocksin order to terminate the execution of the SQL statement that caused the trigger to execute.

/* the trigger throws an exception if a custoner with the given |ast nane already exists */
CREATE TRI GGER trigone BEFORE | NSERT ON cust oner
REFERENCI NG NEW ROW AS newr ow
FOR EACH ROW WHEN (new ow.id > 100)
BEG N ATOM C
I F EXI STS (SELECT * FROM CUSTOVER WHERE CUSTOMER. LASTNAME = NEW LASTNAME) THEN
S| GNAL SQLSTATE ' 45000° SET MESSAGE_TEXT = 'al ready exists';
END | F;
END

/* for each row inserted into the target, the trigger insert a rowinto the table used for
| ogging */
CREATE TRIGGER trig AFTER | NSERT ON testtrig
BEFORE ot hertri gger
REFERENCI NG NEW ROW AS newr ow
FOR EACH ROWWHEN (newrow.id > 1)
BEG N ATOM C
I NSERT INTO triglog VALUES (newow. id, newow. data, 'inserted');
/* nore statenents can be included */
END

193

HyperS@L Triggers

TRIGGER EXECUTION ORDER
trigger execution order
<trigger execution order> ::= BEFORE <other trigger nane>

HyperSQL extends the SQL Standard to allow the order of execution of atrigger to be specified by using [BEFORE
<other trigger name>] in the definition. The newly defined trigger will be executed before the specified other trigger. If
this clauseisnot used, the new trigger isexecuted after all the previously defined triggers of the same scope (BEFORE/
AFTER, EACH ROW / EACH STATEMENT).

DROP TRIGGER
drop trigger statement
<drop trigger statenent> ::= DROP TRI GGER <trigger name>

Destroy atrigger.

194

HyperS@L

Chapter 10. Built In Functions

Fred Toussi, The HSQL Development Group
$Revision: 6115 $

Copyright 2010-2020 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.

2020-06-29

Overview

HyperSQL supports a wide range of built-in functions and allows user-defined functions written in SQL and Java
languages. User-defined functions are covered in the SQL-Invoked Routines chapter. If a built-in function is not
available, you can write your own using procedural SQL or Java.

Built-in aggregate functions such as SUM MAX, ARRAY_AGG, GROUP_CONCAT are covered in the Data Access
and Change chapter, which covers SQL in general. SQL expressions such as COALESCE, NULLI F and CAST are
also discussed there.

The built-in functions fall into three groups:
» SQL Standard Functions

A wide range of functions defined by SQL/Foundation are supported. SQL/Foundation functions that have no
parameter are called without empty parentheses. Functions with multiple parameters often use keywords instead of
commas to separate the parameters. Many functions are overloaded. Among these, some have one or more optional
parameters that can be omitted, while the return type of some functions is dependent upon the type of one of the
parameters. The usage of SQL Standard Functions (where they can be used) is covered more extensively in the
Data Access and Change chapter

» JDBC Open Group CLI Functions

These functions were defined as an extension to the CLI standard, which is the basis for ODBC and JDBC and
supported by many database products. JDBC supports an escape mechanism to specify function calls in SQL
statements in a manner that is independent of the function names supported by the target database engine. For
example SELECT {fn DAYOFMONTH (dateColumm)} FROM nyTabl e can be used in JDBC and is
translated to Standard SQL asSELECT EXTRACT (DAY_OF MONTH FROM dat eCol uim) FROM nyTabl e
if a database engine supports the Standard syntax. If a database engine does not support Standard SQL, then the
tranglation will be different. HyperSQL supports all the function names specified in the JIDBC specifications as
native functions. Therefore, thereisno needto usethe{fn FUNC NAME (...) } escapewith HyperSQL.
If aJDBC function is supported by the SQL Standard in a different form, the SQL Standard form is the preferred
form to use.

» HyperSQL Built-In Functions

Many additional built-in functions are available for some useful operations. Some of these functions return the
current setting for the session and the database. The General Functions accept arguments of different types and
return values based on comparison between the arguments.

In the BNF specification used here, words in capital letters are actual tokens. Syntactic elements such as expressions
are enclosed in angle brackets. The<l eft paren>and<ri ght paren> tokens are represented with the actual

195

HyperS@L Built In Functions

symbol. Optional elements are enclosed with square brackets (<l eft bracket > and <ri ght bracket>).
Multiple options for a required element are enclosed with braces (<l eft brace> and <ri ght brace>).
Alternative tokens are separated with the vertical bar (<verti cal bar >). At the end of each function definition,
the standard which specifies the function is noted in parentheses as JDBC or HyperSQL, or the SQL/Foundation part
of the SQL Standard.

String and Binary String Functions

In SQL, there are three kinds of string: character, binary and bit. The units are respectively characters, octets, and
bits. Each kind of string can be in different data types. CHAR, VARCHAR and CLOB are the character data types.
BINARY, VARBINARY and BLOB arethe binary datatypes. BIT and BIT VARYING arethe bit string types. In all
string functions, the position of aunit of the string within the whole string is specified from 1 to the length of the whole
string. Inthe BNF, <char val ue expr > indicates any valid SQL expression that evaluates to a character type.
Likewise, <bi nary val ue expr> indicatesabinary typeand <num val ue expr > indicatesanumeric type.

ASCII

ASCI | (<char val ue expr>)

Returns an INTEGER equal to the ASCII code value of the first character of <char val ue expr>. (JDBC)
ASCIISTR

ASCI | STR (<char val ue expr>)

Returns the ASCII representation of the string argument with all characters outside the range 32-126 replaced with
Unicode escape codes. (HyperSQL)

BIT_LENGTH
BI T_LENGTH (<string val ue expression>)

BIT_LENGTH can be used with character, binary and bit strings. It return aBIGINT value that measuresthe bit length
of the string. (Foundation)

See dlso CHARACTER _LENGTH and OCTET_LENGTH.
CHAR
CHAR (<UNI CODE code>)

The argument is an INTEGER. Returns a character string containing a single character that has the specified
<UNI CODE code>, which isan integer. ASCII codes are a subset of the allowed values for <UNI CODE code>.
(JDBC)

CHARACTER_LENGTH

{ CHAR LENGTH | CHARACTER LENGTH} (<char val ue expression> [USING{ CHARACTERS
| OCTETS }])

The CHAR_LENGTH or CHARACTER LENGTH function can be used with character strings, while
OCTET_LENGTH can be used with character or binary stringsand BIT_LENGTH can be used with character, binary
and hit strings.

All functionsreturn aBIGINT value that measures the length of the string in the given unit. CHAR_LENGTH counts
characters, OCTET_LENGTH counts octets and BIT_LENGTH counts bits in the string. For CHAR_LENGTH, if
[USI NG OCTETS] isspecified, the octet count isreturned, which istwice the normal length. (Foundation)

196

HyperS@L Built In Functions

CONCAT
CONCAT (<char value expr 1>, <char value expr 2> [, ...])
CONCAT (<binary value expr 1>, <binary value expr 2> [, ...])

The arguments are character strings or binary strings. Returns a string formed by concatenation of the arguments.
Minimum number of arguments is 2. Equivalent to the SQL concatenation expression <val ue expr 1> ||
<value expr 2> [|| ...]

Handling of null values in the CONCAT function depends on the database property sql . concat _nul | s (SET
DATABASE SQL SYNTAX CONCAT NULLS { TRUE || FALSE }). By default, any null value will cause the
function to return null. If the property is set false, then NULL values are replaced with empty strings.

(JDBC)
CONCAT_WS

CONCAT_WS5 (<char val ue separator>, <char value expr 1> <char value expr 2>

[, ...1)

The arguments are character strings. Returns a string formed by concatenation of the arguments from the second
argument, using the separator from the first argument. Minimum number of argumentsis 3. Equivalent to the SQL
concatenation expression<val ue expr 1> || <separator> || <value expr 2> [|| ...] .The
function ignores null values and returns an empty string if all valuesare null. It returns null only if the separator isnull.

Thisfunction issimilar to aMySQL function of the same name.

(HyperSQL)

DIFFERENCE

DI FFERENCE (<char val ue expr 1>, <char val ue expr 2>)

Theargumentsare character strings. Convertstheargumentsinto SOUNDEX codes, and returnsan INTEGER between
0-4 which indicates how similar the two SOUNDEX value are. If the values are the same, it returns 4, if the values
have no similarity, it returns 0. In-between values are returned for partial similarity. (JDBC)

FROM_BASE64

FROM BASE64(<character val ue expr>)

Returns a binary string by converting from the base64 <char act er val ue expr >. (HyperSQL)
INSERT

I NSERT (<char value expr 1>, <offset>, <length> <char value expr 2>)

Returns a character string based on <char val ue expr 1>inwhich <l engt h> characters have been removed
fromthe <of f set > position and in their place, thewhole<char val ue expr 2>iscopied. Equivaentto SQL/
Foundation OVERLAY(<char val ue expr1> PLACING < char val ue expr2> FROM <of f set >
FOR <l engt h>) . (JDBC)

INSTR

I NSTR (<char val ue expr 1>, <char value expr 2> [, <offset>])

197

HyperS@L Built In Functions

Returnsas aBIGINT value the starting position of the first occurrence of <char val ue expr 2> within<char
val ue expr 1>.If <of f set > is specified, the search begins with the position indicated by <of f set >. If the
search is not successful, O is returned. Similar to the LOCATE function but the order of the arguments is reversed.

(HyperSQL)

HEX

HEX(<bi nary val ue expr>)
HEX(<nuneric val ue expr>)

Returns a character string of hexadecimal digits and | etters representing the <bi nary val ue expr >. Exactly the
same as the RAWICHEX function. With <nuneri ¢ val ue expr > the hexadecimal digits represent the number
in base 16 (HyperSQL)

HEXTORAW
HEXTORAW <char val ue expr>)

Returns abinary string formed by translation of hexadecimal digits and lettersinthe<char val ue expr >. Each
character of the<char val ue expr> must be adigit or aletterinthe A |B | C|D | E | F set. Each byte of the
retired binary string is formed by translating two hex digitsinto one byte. (HyperSQL)

LCASE
LCASE (<char val ue expr>)

Returnsacharacter string that isthe lower-caseversion of the<char val ue expr >. Equivalent to SQL/Foundation
LOAER (<char val ue expr>).(JDBC)

LEFT
LEFT (<char val ue expr>, <count>)

Returns a character string consisting of thefirst <count > charactersof <char val ue expr >. Equivalent to SQL/
Foundation SUBSTRI NG <char val ue expr> FROM 0 FOR <count >) . (JDBC)

LENGTH
LENGTH (<char val ue expr>)

Returns as a BIGINT value the number of charactersin <char val ue expr >. Equivalent to SQL/Foundation
CHAR_LENGTH(<char val ue expr>).(JDBC)

LOCATE
LOCATE (<char value expr 1>, <char value expr 2> [, <offset>1])

Returnsasa BIGINT value the starting position of the first occurrence of <char val ue expr 1> within<char

val ue expr 2>.If <of f set > is specified, the search begins with the position indicated by <of f set >. If the
search isnot successful, Oisreturned. Without thethird argument, LOCATE isequivalent to the SQL Standard function
PCSI TI ON(<char val ue expr 1> I N <char val ue expr 2>).(JDBC)

LOWER
LOAER (<char val ue expr>)

Returns a character string that is the lower-case version of the<char val ue expr >. (Foundation)

198

HyperS@L Built In Functions

LPAD
LPAD (<char value expr 1>, <length> [, <char value expr 2> 1])

Returns a character string with the length of <l engt h> characters. The string contains the characters of <char
val ue expr 1> padded to the left with spaces. If <l engt h> is smaller than the length of the string argument,
the argument is truncated. If the optional <char val ue expr 2> is specified, this string is used for padding,
instead of spaces. (HyperSQL)

LTRIM
LTRIM (<char value expr 1> [, <char value expr 2>])

When called with a single argument, returns a character string based on <char val ue expr 1> with the
leading space characters removed. Equivalent to SQL/Foundation TRI M LEADI NG ' ' FROM <char val ue
expr 1>). When called with two arguments, <char val ue expr 2> represents the leading character to be
removed. (JDBC)

OCTET_LENGTH
OCTET_LENGTH (<string val ue expression>)
The OCTET_LENGTH function can be used with character or binary strings.

Return aBIGINT valuethat measuresthelength of thestringinoctets. When used wit h character strings,
the octet count is returned, which is twice the normal length. (Foundation)

OVERLAY

OVERLAY (<char val ue expr 1> PLACI NG <char val ue expr 2>

FROM <start position> [FOR <string length>] [USING CHARACTERS])
OVERLAY (<binary val ue expr 1> PLACI NG <bi nary val ue expr 2>

FROM <start position> [FOR <string length>1])

Thecharacter version of OVERLAY returnsacharacter stringbasedon<char val ue expr 1>inwhich<stri ng
| engt h> characters have been removed from the <st art posi ti on> and in their place, the whole <char
val ue expr 2>iscopied.

The binary version of OVERLAY returns a binary string formed in the same manner as the character version.
(Foundation)

POSITION
PCSI TION (<char val ue expr 1> I N <char val ue expr 2> [USING CHARACTERS])
POSI TION (<binary val ue expr 1> IN <bi nary val ue expr 2>)

The character and binary versions of POSITION search the string value of the second argument for thefirst occurrence
of the first argument string. If the search is successful, the position in the string is returned as a BIGINT. Otherwise
zero is returned. (Foundation)

RAWTOHEX

RAWICHEX(<bi nary val ue expr>)

199

HyperS@L Built In Functions

Returns a character string composed of hexadecimal digits representing the bytesinthe<bi nary val ue expr>.
Each byte of the<bi nary val ue expr > istrandated into two hex digits. (HyperSQL)

REGEXP_MATCHES
REGEXP_MATCHES (<char val ue expr>, <regular expression>)

Returnstrueif the<char val ue expr > matchesthe<r egul ar expr essi on>asawhole. The <r egul ar
expr essi on> isdefined according to Java language regular expression rules. (HyperSQL)

REGEXP_REPLACE
REGEXP_REPLACE (<char val ue expr 1>, <regul ar expressi on> <char val ue expr 3>)

Replaces<char val ue expr 1>regionsthat matchthe<r egul ar expr essi on>with<char val ue expr
3>. The<regul ar expr essi on> isdefined according to Javalanguage regular expression rules. (HyperSQL)

REGEXP_SUBSTRING
REGEXP_SUBSTRI NG (<char val ue expr>, <regul ar expression>)

Returnsthefirstregioninthe<char val ue expr >that matchesthe<r egul ar expr essi on>. The<r egul ar
expr essi on> isdefined according to Java language regular expression rules. (HyperSQL)

REGEXP_SUBSTRING_ARRAY
REGEXP_SUBSTRI NG_ARRAY (<char val ue expr>, <regul ar expression>)

Returnsall theregionsinthe<char val ue expr > that matchthe<r egul ar expr essi on>. The<r egul ar
expr essi on> is defined according to Java language regular expression rules. Returns an array containing the
matching regions (HyperSQL)

REPEAT

REPEAT (<char val ue expr>, <count>)

Returns a character string based on <char val ue expr >, repeated <count > times. (JDBC)

REPLACE

REPLACE (<char val ue expr 1>, <char value expr 2> [, <char value expr 3> 1])

Returns a character string based on <char val ue expr 1> where each occurrence of <char val ue expr
2> has been replaced with acopy of <char val ue expr 3>.If thefunctioniscalled with just two arguments, the
<char value expr 3> defaults to the empty string and calling the function simply removes the occurrences of <char
val ue expr 2> fromthefirst string.(JDBC)

REVERSE

REVERSE (<char val ue expr>)

Returns a character string based on <char val ue expr > with charactersin the reverse order. (HyperSQL)
RIGHT

RI GHT (<char val ue expr>, <count>)

Returns a character string consisting of the last <count > characters of <char val ue expr>. (JDBC)

200

HyperS@L Built In Functions

RPAD
RPAD (<char value expr 1> <length> [, <char value expr 2> 1])

Returns a character string with the length of <l engt h> characters. The string begins with the characters of <char
val ue expr 1> padded to the right with spaces. If <I engt h> is smaller than the length of the string argument,
the argument is truncated. If the optional <char val ue expr 2> is specified, this string is used for padding,
instead of spaces. (HyperSQL)

RTRIM
RTRI M (<char value expr 1> [, <char value expr 2>])

When called with a single argument, returns a character string based on <char val ue expr 1> with the
trailing space characters removed. Equivalent to SQL/Foundation TRI M TRAI LING ' ' FROM <char act er
st ri ng>) . When called with two arguments, <char val ue expr 2> represents the trailing character to be
removed. (JDBC)

SOUNDEX
SOUNDEX (<char val ue expr>)

Returns a four-character code representing the sound of <char val ue expr >. The US census algorithm is used.
For example, the soundex value for "Washington" is W252. (JDBC)

SPACE

SPACE (<count>)

Returns a character string consisting of <count > spaces. (JDBC)

SUBSTR

{ SUBSTR | SUBSTRING } (<char val ue expr>, <offset>, <length>)

The JDBC version of SQL/Foundation SUBSTRI NGreturns a character string that consists of <I engt h> characters
from<char val ue expr> starting at the <of f set > position. (JDBC)

SUBSTRING

SUBSTRI NG (<char value expr> FROM <start position> [FOR <string |length>]
[USING CHARACTERS])

SUBSTRI NG (<bi nary val ue expr> FROM <start position>|[FOR <string length>1])
The character version of SUBSTRING returns a character string that consists of the characters of the<char val ue
expr> from<start position>.Iftheoptiona <string | engt h>isspecified, only<string | engt h>
characters are returned.

The binary version of SUBSTRING returns a binary string in the same manner. (Foundation)

TO_BASE64

TO_BASE64(<bi nary val ue expr>)

Returns a character string as a base 64 representation of the bytesinthe <bi nary val ue expr >. (HyperSQL)

201

HyperS@L Built In Functions

TRIM

TRIM ([[LEADING | TRAILING | BOTH] [<trimcharacter>] FROM] <char val ue
expr>)

TRIM([[LEADING| TRAILING| BOTH] [<trimoctet>] FROM] <binary val ue expr>)

The character version of TRIM returns a character string based on <char val ue expr >. Consecutive instances
of <trim character> areremoved from the beginning, the end or both ends of the<char val ue expr>
depending on the value of the optional first qualifier [LEADI NG | TRAILING | BOTH]. If no qualifier
is specified, BOTH isused asdefault. If [<trim character>] isnot specified, the space character is used
as default.

The binary version of TRIM returns a binary string based on <bi nary val ue expr >. Consecutive instances of
<trim octet> areremoved in the same manner as in the character version. If [<trim octet>] isnot
specified, the O octet is used as default. (Foundation)

TRANSLATE
TRANSLATE(<char val ue expr1>, <char val ue expr2>, <char val ue expr3>)

Returns a character string based on <char val ue expr 1> source. Each character of the source is checked against
the charactersin <char val ue expr 2>. If the character is not found, it is not modified. If the character isfound,
then the character in the same position in <char val ue expr 3>isused. If <char val ue expr 2>islonger
than<char val ue expr 3>, thenthose charactersat the end that have no counterpartin<char val ue expr 3>
are dropped from the result. (HyperSQL)

aced with one without an accent

-- in this exanple any accented character in acolum is repl
T oéu’ ,

r
TRANSLATE(acol umm, ' ACEl QUAEI QUAET QUAGEUAGéT 6uaei ouaét 604
' ACEl QUAEI OQUAElI QUACEUacei ouaei ouaei ouaoeu') ;

UCASE
UCASE (<char val ue expr>)

Returnsacharacter string that isthe upper caseversion of the<char val ue expr >. Equivalent to SQL/Foundation
UPPER(<char val ue expr>). (JDBC)

UPPER

UPPER (<char val ue expr>)

Returns a character string that is the upper case version of the<char val ue expr > . (Foundation)
UNHEX

UNHEX(<char val ue expr>)

Returnsabinary string formed by translation of hexadecimal digitsand lettersinthe<char val ue expr >. Exactly
the same as the HEXTORAWfunction. (HyperSQL)

UNISTR
UNI STR(<char val ue expr>)

Returns a string formed by trandation of hexadecimal escape sequencesinthe <char val ue expr>to UTF-16
characters. Exactly the opposite of ASCI | STR function. (HyperSQL)

202

HyperS@L Built In Functions

Numeric Functions

ABS

ABS (<num val ue expr> | <interval value expr>)

Returns the absol ute value of the argument as a value of the same type. (JDBC and Foundation)

ACOS

ACOS (<num val ue expr>)

Returns the arc-cosine of the argument in radians as a value of DOUBLE type. (JDBC)

ASIN

ASIN (<num val ue expr>)

Returns the arc-sine of the argument in radians as a value of DOUBLE type. (JDBC)

ATAN

ATAN (<num val ue expr>)

Returns the arc-tangent of the argument in radians as a value of DOUBLE type. (JDBC)

ATAN2

ATAN2 (<num val ue expr 1>, <num val ue expr 2>)

The<num val ue expr 1>and<num val ue expr 2> expressthex andy coordinates of a point. Returns
the angle, in radians, representing the angle coordinate of the point in polar coordinates, as a value of DOUBLE type.
(JDBC)

CEILING

{ CEIL | CEILING} (<numval ue expr>)

Returns the smallest integer greater than or equal to the argument. If the argument is exact numeric then the result is
exact numeric with a scale of 0. If the argument is approximate numeric, then the result is of DOUBLE type. (JDBC
and Foundation)

BITAND

Bl TAND (<num val ue expr 1>, <num val ue expr 2>)

BI TAND (<bit value expr 1> <bit value expr 2>)

BITANDNOT

Bl TANDNOT (<num val ue expr 1>, <num val ue expr 2>)

Bl TANDNOT (<bit value expr 1>, <bit value expr 2>)

BITNOT

BI TNOT (<num val ue expr 1>)

203

HyperS@L Built In Functions

BI TNOT (<bit val ue expr 1>)

BITOR

Bl TOR (<num val ue expr 1>, <num val ue expr 2>)
BI TOR (<bit value expr 1> <bit value expr 2>)
BITXOR

Bl TXOR (<num val ue expr 1>, <num val ue expr 2>)
Bl TXOR (<bit value expr 1>, <bit value expr 2>)

These functions perform bit operations on two values, or in the case of BITNOT on a single value. The values are
either integer values, or bit strings. The result is an integer value of the same type as the arguments, or a hit string of
the same length as the argument. Each bit of the result is formed by performing the operation on corresponding bits
of the arguments. The names of the function indicate NOT, OR, AND, XOR operations. The BITANDNOT performs
NOT on the second argument, then performs AND on result and the first argument. (HyperSQL)

COS

COs (<num val ue expr>)

Returns the cosine of the argument (an angle expressed in radians) as a value of DOUBLE type. (JDBC)
COSH

COSH (<num val ue expr>)

Returns the hyperbolic cosine of the argument as avalue of DOUBLE type. (HyperSQL)

CcoT

COT (<numval ue expr>)

Returns the cotangent of the argument as a value of DOUBLE type. The<num val ue expr > represents an angle
expressed in radians. (JDBC)

DEGREES
DEGREES (<num val ue expr>)

Converts the argument (an angle expressed in r adi ans) into degrees and returns the value in the DOUBLE type.
(JDBC)

EXP

EXP (<num val ue expr>)

Returns the exponential value of the argument as avalue of DOUBLE type. (JDBC and Foundation)
FLOOR

FLOOR (<num val ue expr>)

Returnsthe largest integer that isless than or equal to the argument. If the argument is exact numeric then theresult is
exact numeric with ascale of 0. If the argument is approximate numeric, then the result is of DOUBLE type. (JDBC
and Foundation)

204

HyperS@L Built In Functions

LN

LN (<num val ue expr>)

Returns the natural logarithm of the argument, as a value of DOUBLE type. (Foundation)
LOG

LOG (<num val ue expr>)

Returns the natural logarithm of the argument, as a value of DOUBLE type. (JDBC)
LOG10

LOGLO (<num val ue expr>)

Returns the base 10 logarithm of the argument as a value of DOUBLE type. (JDBC)
MOD

MOD (<num val ue expr 1>, <num val ue expr 2>)

Returnsthe remainder (modulus) of <num val ue expr 1> dividedby <num val ue expr 2>. Thedatatype
of the returned value is the same as the second argument. (JDBC and Foundation)

NANVL
NANVL (<num val ue expr 1>, <num val ue expr 2>)

Returns an aternative for the NaN (Not a Number) double value in <num val ue expr 1> as<num val ue
expr 2>., otherwise returnsthe first argument. The data type of the returned valueis DOUBLE. (HyperSQL)

Pl

Pl ()

Returns the constant pi as a value of DOUBLE type. (JDBC)

POWER

PONER (<num val ue expr 1>, <num val ue expr 2>)

Returns the value of <num val ue expr 1> raised to the power of <i nt val ue expr 2> asavaue of
DOUBLE type. (JDBC and Foundation)

RADIANS
RADI ANS (<num val ue expr>)

Converts the argument (an angle expressed in degr ees) into radians and returns the value in the DOUBLE type.
(JDBC)

RAND
RAND ([<int value expr>1])

Returns arandom value in the DOUBLE type. Theoptional [<i nt val ue expr>] isused asseed vaue. In
HyperSQL each session has a separate random number generator. Thefirst call that uses a seed parameter setsthe seed
for subsequent calls that do not include a parameter. (JDBC)

205

HyperS@L Built In Functions

ROUND
ROUND (<num val ue expr>, <int value expr>)

The <num val ue expr> is of the DOUBLE type or DECIMAL type. The function returns a DOUBLE or
DECIMAL value which is the value of the argument rounded to <i nt val ue expr > placesright of the decimal
point. If <i nt val ue expr > isnegative, the first argument isrounded to <i nt val ue expr > placesto the
left of the decimal point.

This function rounds values ending with .5 or larger away from zero for DECIMAL arguments and results. When
the value ends with .5 or larger and the argument and result are DOUBLE, It rounds the value towards the closest
even value,

The datetime version is discussed in the next section. (JDBC)
SIGN
SIGN (<num val ue expr>)

Returns an INTEGER, indicating the sign of the argument. If the argument is negative then -1 isreturned. If it is equal
to zero then O isreturned. If the argument is positive then 1 isreturned. (JDBC)

SIN

SIN (<num val ue expr>)

Returns the sine of the argument (an angle expressed in radians) as a value of DOUBLE type. (JDBC)
SINH

SINH (<num val ue expr>)

Returns the hyperbolic sine of the argument as a value of DOUBLE type. (HyperSQL)

SQRT

SQRT (<num val ue expr>)

Returns the square root of the argument as a value of DOUBLE type. (JDBC and Foundation)

TAN

TAN (<num val ue expr>)

Returns the tangent of the argument (an angle expressed in radians) as a value of DOUBLE type. (JDBC)
TANH

TANH (<num val ue expr>)

Returns the hyperbolic tangent of the argument as avalue of DOUBLE type. (HyperSQL)
TO_NUMBER

TO NUMBER (<char val ue expr>)

Performs a cast from character to DECIMAL number. The character string must consist of digits and can have a
decimal point. Use the SQL Standard CAST expression instead of this non-standard function. (HyperSQL)

206

HyperS@L Built In Functions

TRUNC
TRUNC (<num val ue expr> [, <int value expr>])

Thisis asimilar to the TRUNCATE function when the first argument is numeric. If the second argument is omitted,
zeroisused in its place.

The datetime version is discussed in the next section. (HyperSQL)
TRUNCATE
TRUNCATE (<num val ue expr> [, <int value expr>])

Returns avalue in the same type as<num val ue expr > but may reduce the scale of DECIMAL and NUMERIC
values. The value is rounded by replacing digits with zeros from <i nt val ue expr > placesright of the decimal
pointtotheend. If <i nt val ue expr >isnegative, ABS(<i nt val ue expr>) digitsto left of the decimal
point and all digits to the right of the decimal points are replaced with zeros. Results of calling TRUNCATE with
12345.6789 with (-2, 0, 2, 4) are (12300, 12345, 12345.67, 12345.6789). The function does not change the number if
the second argument is larger than or equal to the scale of the first argument.

If the second argument is not a constant (when it is a parameter or column reference) then the type of the return value
is always the same as the type of the first argument. In this case, the discarded digits are replaced with zeros. (JDBC)

WIDTH_BUCKET
W DTH_BUCKET (<val ue expr 1>, <val ue expr 2>, <val ue expr 3>, <int val ue expr>)

Returns an integer value between O and <i nt val ue expr> + 1. Theinitial three parameters are of the same
numeric or datetimetype. Therange, (<val ue expr 2> , <val ue expr 3>)isdividedinto<i nt val ue
expr > equal sections (buckets). The returned integer value indicates the index of the bucket where <val ue expr
1> can be placed. If the<val ue expr 1> fallsbefore or after the range, the return valueis 0 or <val ue expr
1> + 1 respectively.

This function can be used with numeric or datetime values. Invalid arguments, including <i nt val ue expr>
smaller than 1, or equal valuesfor <val ue expr 2>and<val ue expr 3> will causean exception. (Foundation)

An exampleisgiven below:

W DTH_BUCKET(5, 10, 110, 10)
0

W DTH_BUCKET(23, 10, 110, 10)
2

W DTH_BUCKET(100, 10, 110, 10)
10

W DTH_BUCKET(200, 10, 110, 10)
11

Date Time and Interval Functions

Functions to report the time zone.

Functions to Report the Time Zone.

TIMEZONE

207

HyperS@L Built In Functions

TI MEZONE()

Returns the current time zone for the session. Returns an INTERVAL HOUR TO MINUTE value. (HyperSQL)
SESSION_TIMEZONE

SESSI ON_TI MEZONE()

Returnsthe default time zonefor the current session. Returnsan INTERVAL HOUR TO MINUTE value. (HyperSQL)
SESSIONTIMEZONE

SESSI ONTI MEZONE()

Same as SESSION_TIMEZONE. (HyperSQL)

DATABASE_TIMEZONE

DATABASE_TI MEZONE()

Returns the time zone for the database engine. Thisis based on where the database server processis located. Returns
an INTERVAL HOUR TO MINUTE value. (HyperSQL)

DBTIMEZONE
DBTI MEZONE()

Similar to DATABASE_TIMEZONE. Returns a string. Worksin ORA compatibility mode only.(HyperSQL)

Functions to Report the Current Datetime

CURRENT_DATE

CURRENT _DATE

CURRENT_TIME

CURRENT _TIME [(<time precision>)]
LOCALTIME

LOCALTIME [(<time precision>)]
CURRENT_TIMESTAMP

CURRENT_TI MESTAMP [(<timestanp precision>)]
LOCALTIMESTAMP

LOCALTI MESTAMP [(<tinmestanp precision>)]

These datetime functions return the datetime val ue representing the moment the functioniscalled. CURRENT_DATE
returns a value of DATE type. CURRENT _TIME returns avalue of TIME WITH TIME ZONE type. LOCALTIME
returns avalue of TIME type. CURRENT_TIMESTAMP returns avalue of TIMESTAMP WITH TIME ZONE type.
LOCALTIMESTAMP returns a value of TIMESTAMP type. If theoptional [(<tine precision>)] or
[(<timestanp precision>)] isused, then the returned value has the specified fraction of the second
precision. When the functions are used multiple times in a single SQL statement, the returned values represent the
same point of time. (Foundation)

208

HyperS@L Built In Functions

NOW
NOW ()

This function is equivalent to LOCALTI MESTAMP. It can be used as a ho-arg function as the parens are optional.
(HyperSQL)

CURDATE

CURDATE ()

Thisfunction isequivalent to CURRENT _DATE. (JDBC)
CURTIME

CURTI ME ()

Thisfunction isequivalentto LOCALTI ME. (JDBC)
SYSDATE

SYSDATE

This no-arg function is similar to LOCALTI MESTAMP but it returns the timestamp without fraction of second.
(HyperSQL)

SYSTIMESTAMP
SYSTI MESTAMP

This no-arg function is similar to CURRENT _TI MESTAMP and is enabled in ORA syntax mode only. It returns the
timestamp when it is called. (HyperSQL)

TODAY
TODAY

This no-arg function is equivalent to CURRENT_DATE. (HyperSQL)

Functions to Extract an Element of a Datetime

DATENAME, DATEPART and EOMONTH

These functions are available in the MSS compatibility mode and perform the equivalent of EXTRACT function or
the LAST_DAY function. (HyperSQL)

DAYNAME
DAYNAME (<datetinme val ue expr>)

Thisfunction isequivalent to EXTRACT (DAY _NAME FROM ...) Returnsastringin the range of Sunday
- Saturday. (JDBC)

DAYOFMONTH

DAYOFMONTH (<datetime val ue expr>)

209

HyperS@L Built In Functions

This function is equivalent to EXTRACT (DAY _OF MONTH FROM ...) Returnsan integer value in the
range of 1-31. (JDBC)

DAYOFWEEK
DAYOFVEEEK (<datetine val ue expr>)

Thisfunction is equivalent to EXTRACT (DAY _OF WEEK FROM ...) Returnsaninteger valuein therange
of 1-7. Thefirst day of the week is Sunday. (JDBC)

DAYOFYEAR
DAYOFYEAR (<datetine val ue expr>)

Thisfunction is equivalent to EXTRACT (DAY_COF YEAR FROM ...) Returnsaninteger valuein therange
of 1-366. (JDBC)

DAYS
DAYS (<datetinme val ue expr>)

The<dat eti me val ue expr> isof DATE or TIMESTAMP type. Thisfunction returnsthe DAY number since
the first day of the calendar. Thefirst day is numbered 1. (HyperSQL)

HOUR
HOUR (<datetinme val ue expr>)

This function is equivalent to EXTRACT (HOUR FROM ...) Returnsan integer value in the range of 0-23.
(JDBC)

MINUTE
M NUTE (<datetinme val ue expr>)

This function is equivalent to EXTRACT (M NUTE FROM ...) Returnsan integer value in the range of
0-59. (JDBC)

MONTH
MONTH (<datetine val ue expr>)

Thisfunction is equivalent to EXTRACT (MONTH FROM ...) Returnsaninteger valuein the range of 1-12.
(JDBC)

MONTHNAME
MONTHNAME (<datetine val ue expr>)

This function is equivalent to EXTRACT (NAME_OF MONTH FROM ...) Returnsastring in the range of
January - December. (JDBC)

QUARTER
QUARTER (<datetine value expr>)
Thisfunctionisequivalent to EXTRACT (QUARTER FROM ...) Returnsanintegerintherangeof 1- 4. (JDBC)

SECOND

210

HyperS@L Built In Functions

SECOND (<datetinme val ue expr>)

Thisfunction is equivalent to EXTRACT (SECOND FROM ...) Returnsan integer or decimal in the range of
0 - 59, with the same precision as the <datetime value expr>. (JDBC)

SECONDS SINCE_MIDNIGHT
SECONDS_SI NCE_M DNI GHT (<datetime val ue expr>)

Thisfunction is equivalent to EXTRACT (SECONDS_SI NCE_ M DNI GHT FROM ...) Returnsan integer
in the range of 0 - 86399. (HyperSQL)

UNIX_MILLIS
UNI X MLLIS ([<datetine val ue expression>])

This function returns a BIGINT value. With no parameter, it returns the number of milliseconds since 1970-01-01.
With a DATE or TIMESTAMP parameter, it converts the argument into number of milliseconds since 1970-01-01.

(HyperSQL)
UNIX_TIMESTAMP
UNI X _TI MESTAMP ([<datetinme val ue expression>])

This function returns a BIGINT value. With no parameter, it returns the number of seconds since 1970-01-01.
With a DATE or TIMESTAMP parameter, it converts the argument into number of seconds since 1970-01-01. The
TIMESTAMP (<num value expression> function returnsa TIMESTAMP from a Unix timestamp. (HyperSQL)

WEEK
WEEK (<datetime val ue expr>)

This function is equivalent to EXTRACT (WEEK OF YEAR FROM ...) Returnsan integer in the range
of 1-54. (JDBC)

YEAR

YEAR (<datetine val ue expr>)

Thisfunctionisequivalentto EXTRACT (YEAR FROM ...) Returnsaninteger intherangeof 1-9999. (JDBC)
EXTRACT

EXTRACT (<extract field> FROM <extract source>)

<extract field>::= YEAR| MONTH| DAY | HOUR| M NUTE | DAY_OF WEEK | WEEK_OF YEAR
| QUARTER | DAY _OF YEAR | DAY_OF MONTH |

TI MEZONE_HOUR | TI MEZONE_M NUTE | SECOND | SECONDS_SI NCE_M DNI GHT |
DAY _NAME | MONTH_NAME
<extract source> ::= <datetine value expr> | <interval val ue expr>

The EXTRACT function returns afield or element of the <ext ract source>. The<extract source>isa
datetime or interval expression. Thetype of thereturn valueisBIGINT for most of the <ext ract fi el d> options.
The exception is SECOND, where a DECIMAL value is returned which has the same precision as the datetime or
interval expression. Thefield valuesDAY_NAME or MONTH_NAME result in acharacter string. When MONTH_NAME

211

HyperS@L Built In Functions

is specified, astring in the range January - December isreturned. When DAY_NAME is specified, astring in the range
Sunday -Saturday is returned.

If the<ext ract source>isFROM <dat eti ne val ue expr >, different groupsof <ext r act sour ce>can
be used depending on the data type of the expression. The TI MEZONE_HOUR | TI MEZONE_M NUTE options are
valid only for TIME WITH TIMEZONE and TIMESTAMP WITH TIMEZONE data types. The HOUR | M NUTE
| SECOND | SECONDS M DNI GHT options, are valid for TIME and TIMESTAMP types. The rest of the fields
arevalid for DATE and TIMESTAMP types.

If the<extract source>isFROM <i nterval val ue expr>,the<extract fi el d>mustbeoneofthe
fields of the INTERVAL type of the expressions. The YEAR | MONTH options may be valid for INTERVAL types
based on months. The DAY | HOUR | M NUTE | SECOND | SECONDS M DNI GHT options may be valid
for INTERVAL types based on seconds. For example, DAY | HOUR | M NUTE arethe only valid fields for the
INTERVAL DAY TO MINUTE data type. (Foundation with HyperSQL extensions)

Functions for Datetime Arithmetic

NEXT_DAY
NEXT_DAY (<datetinme val ue expr>, <character val ue expr>)

This function returns a TIMESTAMP for compatibility reasons. The return value is the next weekday named
by the second argument that occurs after the first date. For example, next Wednesday is expressed as
NEXT_DAY(CURRENT_DATE, ' WEDNESDAY') . (HyperSQL)

ADD_MONTHS
ADD MONTHS (<datetinme val ue expr>, <numeric val ue expr>)

This function is similar but different to ssmple addition a MONTH interval to a datetime value. The SQL Standard
expression, <dat eti me val ue expr> + n MONTH, when used with the last day of a short month such as
February, returns a date that has the same day of the month in the target month. The ADD_MONTHS function adjusts
the target day to the last day of the target month. For all other days, the behaviour is the same. This function always
returns a TIMESTAMP(0) value, regardless of the type of the argument. (HyperSQL)

The example below compares the output of the function and the expression.

VALUES ADD MONTHS (DATE '2012-02-29' , 1), DATE '2012-02-29' + 1 MONTH

2012-03-31 00:00: 00 2012-03-29

LAST_DAY
LAST DAY (<datetine val ue expr>)

Returnsthe last day of the month for the given <dat et i me val ue expr >. Thereturned value preservesthe year,
month, hour, minute and second fields of thetimestamp. Thetype of theresultisalways TIMESTAMP(0). (HyperSQL)

VALUES LAST_DAY (TI MESTAWMP '2012-02-14 12:30:44")

2012-02-29 12:30: 44

212

HyperS@L Built In Functions

MONTHS BETWEEN
MONTHS BETWEEN (<datetinme value exprl> , <datetine value expr2>)

Returnsanumber (not an INTERVAL) possibly with afraction, representing the number of months between two days.
If both dates have the same day of month, or are on thelast day of the month, the result is an exact numeric. Otherwise,
the fraction is calculated base on 31 days per month. Y ou can cast the resulting value into INTERVAL MONTH and
useit for datetime arithmetic. (HyperSQL)

VALUES MONTHS_BETWEEN (Tl MESTAMP ' 2013-02-14 12:30:44', TIMESTAMP '2012-01-04 12:30:44")

13. 32258064516129000000000000000000

TIMESTAMPADD

TI MESTAMPADD (<tsi datetime field> <nuneric val ue expression>, <datetine val ue
expr>)

TIMESTAMPDIFF

TI MESTAMPDI FF (<tsi datetime field> <datetine value expr 1> <datetine val ue
expr 2>)

<tsi datetime field> ::= SQ_TSI _FRAC SECOND | SQ._TSI_MLLI _SECOND |
SQL_TSI _SECOND | SQ._TSI_MNUTE | SQ_TSI _HOUR | SQL_TSI DAY | SQL_TSI WEEK |
SQL_TSI _MONTH | SQL_TSI _QUARTER | SQL_TSI _YEAR

HyperSQL supportsfull SQL Standard datetimefeatures. It supports adding integers representing units of time directly
to datetime values using the arithmetic plus operator. It also supports subtracting one <dat eti me val ue expr>
from another in the given units of date or time using the minus operator. An example of <dat et i ne val ue expr >
+ <nuneric val ue expression> <datetine field> iSLOCALTI MESTAMP + 5 DAY. Anexample
of (<datetine value expr> - <numeric value expression>) <datetine field> is
(CURRENT_DATE - DATE ' 2008-08-8") MONTH which returnsthe number of calendar months between
the two dates.

The two JDBC functions, TI MESTAMPADD and TI MESTAMPDI FF perform a similar function to the above SQL
expressions. The <tsi datetime field> names are keywords and are different from those used in the EXTRACT
functions. These names are valid for use only when calling these two functions. With TIMESTAMPDIFF, the names
indicate the unit of time used to compute the difference between two datetime fields. With TIMESTAMPADD they
represent the unit of time used for the <numeric value expression>. The unit of timefor each nameis self-explanatory.
In the case of SQL_TSI_FRAC_SECOND, the unit is nanosecond.

The return value for TIMESTAMPADD is of the same type as the datetime argument used. The return type
for TIMESTAMPDIFF is always BIGINT, regardless of the type of arguments. The two datetime arguments of
TIMESTAMPDIFF should be of the same type. The TIME typeis not supported for the arguments to these functions.

TI MESTAMPDI FF isevaluated as <datetime value expr 2> - <datetime value expr 1>. (JDBC)

TI MESTAMPADD (SQL_TSI _MONTH, 3, DATE '2008-11-22')

TI MESTAMPDI FF (SQL_TSI _HOUR, TI MESTAWP ' 2008-11-20 20: 30: 40', TIMESTAWP ' 2008-11-21 21:30:40')

DATE_ADD

213

HyperS@L Built In Functions

DATE ADD (<datetine value expr> , <interval value expr>)
DATE_SUB
DATE SUB (<datetine value expr> , <interval value expr>)

These functions are equivalent to arithmetic addition and subtraction, <datetime value expr> + <interval value expr>
and <datetime value expr> - <interval value expr>. The functions are provided for compatibility with other databases.
The supported interval units are the standard SQL interval unit listed in other chapters of this guide. The TIME type
is supported for the argument to these functions. (HyperSQL)

DATE_ADD (DATE '2008-11-22', |NTERVAL 3 MONTH)

DATE_SUB (TI MESTAMP ' 2008-11-22 20: 30:40', | NTERVAL 20 HOUR)

DATEADD
DATEADD (<field> <nuneric value expr>, <datetine value expr>)
DATEDIFF

DATEDI FF (<field>, <datetine value expr 1> <datetine value expr 2>)

<field> ::= "yy'" | 'year' | 'mm | 'nmonth' | 'dd" | 'day' | 'hh' | "hour' |
'm' | 'minute | '"ss' | 'second" | 'nms' | 'mllisecond
<field> ::= YY| YEAR| M| MNTH | DD | DAY | HH| HOUR | M | MNUTE |

SS | SECOND | M5 | M LLI SECOND

The DATEADD and DATEDIFF functionsare aternativesto TIMESTAMPADD and TIMESTAMPDIFF, with fewer
available field options. The field names are specified as strings or as keywords. The short field names trandate to
YEAR, MONTH, DAY, HOUR, MINUTE, SECOND and MILLISECOND. DATEDI FF is evaluated as <datetime
value expr 2> - <datetime value expr 1>. (HyperSQL}

DATEDI FF (<datetine val ue expr 1>, <datetinme value expr 2>)

This special form of DATEDI FF does not have a field parameter and return the number of days between two dates.
Thisformisevaluated as<dat et i ne val ue expr 1> - <datetime val ue expr 2>, whichisdifferent
from the main form. This form is compatible with some other database engines. The TIME type is not supported for
the arguments to these functions. (HyperSQL}

DATEADD ('nonth', 3, DATE '2008-11-22')

DATEDI FF (' hour', TI MESTAWMP '2008-11-22 20: 30: 40", TIMESTAWP '2008-11-22 00: 30: 40")

ROUND
ROUND (<datetine value expr> [, <char value expr>1])

The<datetine val ue expr> isof DATE, TIME or TIMESTAMP type. The<char val ue expr>isa
format string for YEAR, MONTH, WEEK OF YEAR, DAY, HOUR, MINUTE or SECOND aslisted in the table for
TO_CHAR and TO_DATE format elements (see below). The datetime value is rounded up or down after the specified
field and the rest of the fields to the right are set to one for MONTH and DAY, or zero, for the rest of the fields.
For example, rounding a timestamp value on the DAY field results in midnight the same date or midnight the next
day if thetimeis at or after 12 noon. If the second argument is omitted, the datetime value is rounded to the nearest

day. (HyperSQL)

214

HyperS@L Built In Functions

TRUNC
TRUNC (<datetime value expr> [, <char value expr>1])

Similar to the ROUND function, the<num val ue expr > isof DATE, TIME or TIMESTAMP type. The <char

val ue expr>isaformat string (such as'YY' or 'MM") for YEAR, MONTH, WEEK OF YEAR, DAY, HOUR,
MINUTE or SECOND aslistedinthetablefor TO_CHAR and TO_DATE format elements (see below). The datetime
value is truncated after the specified field and the rest of the fields to the right are set to one for MONTH and DAY,
or zero, for the rest of the fields. For example, applying TRUNC to a timestamp value on the DAY field resultsin
midnight the same date. Examples of ROUND and TRUNC functions are given below. If the second argument is
omitted, the datetime value is truncated to midnight the same date. (HyperSQL)

ROUND (TI MESTAMP' 2008- 08-01 20:30:40', 'YYYY)
TI MESTAMP ' 2009-01- 01 00: 00: 00’
TRUNC (TI MESTAMP' 2008- 08- 01 20: 30: 40", ' YYYY)

TI MESTAMP ' 2008-01- 01 00: 00: 00’

Functions to Convert or Format a Datetime

NUMTODSINTERVAL
NUMTODSI NTERVAL (<numeric val ue expr>, <interval spec string>)

This function converts the numeric value to an interval, exactly like CAST. The interval spec string isone of 'DAY",
'HOUR', 'MINUTE', 'SECOND"'. (HyperSQL)

NUMTOYMINTERVAL
NUMTOYM NTERVAL (<numeric val ue expr>, <interval spec string>)

This function converts the numeric value to an interval, exactly like CAST. The interval spec string is 'YEAR' or
'MONTH". (HyperSQL)

TIMESTAMP

TIMESTAMP (<num value expr>)

TIMESTAMP (<char value expr>)

TI MESTAMP (<char val ue expr>, <char val ue expr>)

TI MESTAMP (<date val ue expr>, <tine value expr>)

This function trang ates the argumentsinto a TIMESTAMP WIHOUT TIME ZONE value.

When the single argument is a numeric value, it isinterpreted as a Unix timestamp in seconds.
When the single argument is a formatted date or timestamp string, it istranslated to a TIMESTAMP.

When two arguments are used, the first argument is the date part and the second argument is the time part of the
returned TIMESTAMP value. An example, including the result, is given below:

TI MESTAMP (' 2008-11-22', '20:30:40")

TI MESTAWP ' 2008-11-22 20: 30: 40. 000000’

215

HyperS@L Built In Functions

TIMESTAMP_WITH_ZONE

TIMESTAMP_WITH_ZONE (<num value expr>)

TIMESTAMP_WITH_ZONE (<char value expr>)

This function trand ates the argumentsinto a TIMESTAMP WITH TIME ZONE value.

When the single argument is a numeric value, it isinterpreted as a Unix timestamp in seconds.
When the single argument is TIMESTAMP, it is converted to TIMESTAMP WITH TIME ZONE.

The time zone of the returned value is the local time zone at the time of the timestamp argument. This accounts for
daylight saving times. For example, if the local time zone was +4:00 at the time of the given Unix timestamp, the
returned valueislocal timestamp at the time with time zone +4:00.

TO_CHAR
TO CHAR (<datetine val ue expr>, <char val ue expr>)

This function formats a datetime or numeric value to the format given in the second argument. The format string can
contain pattern elements from the list given below, plus punctuation and space characters. An example, including the
result, is given below:

TO CHAR (TI MESTAMP' 2008-02-01 20: 30: 40", 'YYYY BC MONTH, DAY HH)
2008 AD February, Friday 8

TO CHAR (TI MESTAMP' 2008-02-01 20: 30:40', '"The Date is" YYYY BC MONTH, DAY HH)

The Date is 2008 AD February, Friday 8

The format is internally translated to a j ava. t ext . Si npl eDat eFor mat format string. Separator characters
(space, comma, period, hyphen, colon, semicolon, forward slash) can be included between the pattern elements.
Unsupported format strings should not be used. Y ou can include a string literal inside the format string by enclosing
it in double quotes (see the second example above). (HyperSQL)

TO_DATE
TO DATE (<char val ue expr>, <char val ue expr>)

This function trandates a formatted datetime sting to a TIMESTAMP(0) according to the format given in the second
argument. See TO_TIMESTAMP below for further details.

TO_TIMESTAMP
TO TI MESTAMP (<char val ue expr>, <char val ue expr>)

This function translates a formatted datetime sting to a TIMESTAMP(6) according to the format given in the second
argument. The format string can contain pattern elements from the list given below, plus punctuation and space
characters. The pattern should contain all the necessary fieldsto construct adate, including, year, month, day of month,
etc. Thereturned timestamp can then be cast into DATE or TIME typesif necessary. An example, including the result,
is given below:

TO_TI MESTAMP (' 22/11/2008 20:30:40', 'DD/ MM YYYY HH M :SS)

TI MESTAWP ' 2008-11-22 20: 30: 40. 000000’

216

HyperS@L Built In Functions

The format strings that can be used for TO_DATE and TO_TIMESTAMP are more restrictive than those used for
TO_CHAR, because the format string must contain the elements needed to build afull DATE or TIMESTAMP value.
For example, you cannot use the WW', 'W', 'HH' or 'HH12' format elementswith TO DATE or TO_TIMESTAMP

The format is internally trandated to a j ava. t ext . Si npl eDat eFor mat format string. Unsupported format
strings should not be used. With TO_CHAR, you can include a string literal inside the format string by enclosing it
in double quotes. (HyperSQL)

The supported format components are all uppercase as follows:

Table10.1. TO CHAR, TO DATE and TO TIMESTAMP format elements

BC| B.C. | AD| A D Returns AD for common era and BC for before common era

RRRR 4-digit year

YYYY 4-digit year

I YYY 4-digit year, corresponding to 1 SO week of the year. The reported year for the last
few days of the calendar year may be the next year.

YY 2 digit year

Y 2 digit year, corresponding to 1SO week of the year

MMV Month (01-12)

MON Short three-letter name of month

MONTH Name of month

WV Week of year (1-53) whereweek 1 startson thefirst day of the year and continues
to the seventh day of the year (not a calendar week).

W Week of month (1-5) where week 1 starts on the first day of the month and ends
on the seventh (not a calendar week).

W Week of year (1-52 or 1-53) based on the 1SO standard. Week starts on Monday.
Thefirst week may start near the end of previous year.

DAY Name of day.

DD Day of month (01-31).

DDD Day of year (1-366).

DY Short three-letter name of day.

HH Hour of day (00-11).

HH12 Hour of day (00-11).

HH24 Hour of day (00-23).

M Minute (00-59).

SS Second (00-59).

FF Fractional seconds. Use without repetition.

Array Functions

Array functions are specialised functionswith ARRAY parameters or return values. For the ARRAY _AGG aggregate
function, seethe Data Access and Change chapter.

CARDINALITY

217

HyperS@L Built In Functions

CARDI NALI TY(<array val ue expr>)

Returns the element count for the given array argument. (Foundation)
MAX_CARDINALITY

MAX_CARDI NALI TY(<array val ue expr>)

Returns the maximum allowed element count for the given array argument. (Foundation)
POSITION_ARRAY

PCSI TI ON_ARRAY(<val ue expression> IN <array value expr> [FROM <int val ue
expr>1)

Returnsthe position of thefirst match for the<val ue expr essi on>inthearray. By default, the search startsfrom
the beginning of the array. The optional <i nt val ue expr > specifies the start position. Positions are counted
from 1. Returns zero if no match isfound. (HyperSQL)

SORT_ARRAY
SORT_ARRAY(<array value expr>|[{ ASC| DESC}] [NULLS { FIRST | LAST }])

Returns a sorted copy of the array. By default, sort is performed in ascending order and NULL elements are sorted
first. (HyperSQL)

TRIM_ARRAY
TRI M_ARRAY(<array val ue expr>, <num val ue expr>)

Returns a new array that contains the elements of the <array val ue expr> minus the number of elements
specified by the<num val ue expr>. Elementsare discarded from the end of the array. (Foundation)

SEQUENCE_ARRAY
SEQUENCE_ARRAY(<val ue expr 1>, <value expr 2>, <value expr 3)

Returns a new array that contains a sequence of values. The <val ue expr 1> isthe lower bound of the range.
The <val ue expr 2> istheupper bound of therange. The <val ue expr 3> istheincrement. The elements
of the array are within the inclusive range. The first element is<val ue expr 1> and each subsequent element is
the sum of the previous element and the increment. If the increment is zero, only the first element is returned. When
the increment is negative, the lower bound should be larger than the upper bound. The type of the arguments can be
all number types, or a datetime range and an interval for the third argument (HyperSQL)

In the examples below, a number sequence and a date sequence are shown. The UNNEST table expression is used
to form atable from the array.

SEQUENCE_ARRAY(0, 100, 5)
ARRAY[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100]
SELECT * FROM UNNEST(SEQUENCE_ARRAY(10, 12, 1))

c1
10
11
12

218

HyperS@L Built In Functions

SELECT * FROM UNNEST(SEQUENCE ARRAY(CURRENT DATE, CURRENT_DATE + 6 DAY, 1 DAY)) W TH ORDI NALI TY
AS T(D, 1)

2010-08-01
2010-08-02
2010-08-03
2010-08-04
2010- 08- 05
2010-08- 06
2010-08- 07

~NOoO O WN P

General Functions

General functions can take different types of arguments. Some General Functions accept a variable number of
arguments.

Also seethe Data Access and Change chapter for SQL expressions that are similar to functions, for example CAST
and NULLIF.

CASEWHEN
CASEWHEN(<bool ean val ue expr>, <val ue expr 2>, <val ue expr 3>)

If the <bool ean val ue expr>istrue returns<val ue expr 2> otherwisereturns<val ue expr 3>.
Use a CASE WHEN expression instead for nore extensive capabilities and options.
CASE WHEN is documented in the Data Access and Change chapter. (HyperSQL)

COALESCE
COALESCE(<val ue expr 1>, <value expr 2> [, ...])

Returns<val ue expr 1> if itisnot null, otherwise returns<val ue expr 2> if not null and so on. The type
of both arguments must be comparable. (Foundation)

CONVERT
CONVERT (<val ue expr> , <data type>)

<data type> ::= { SQLBIGNT | SQ BINARY | SQL BIT |SQ_BLOB | SQ._BOO.EAN
| SQL CHAR | SQL_CLOB | SQ._DATE | SQ. _DECIMAL | SQ. DATALINK | SQL_DOUBLE |
SQ _FLOAT | SQL_I NTEGER | SQ._LONGVARBI NARY | SQL_LONGNVARCHAR | SQL_LONGVARCHAR
| SQL_NCHAR | SQL_NCLOB | SQ_NUMERIC | SQ_NVARCHAR | SQL_REAL | SQ._ROWD
| SQ_SQXM. | SQ_SMALLINT | SQ_TIME | SQ_TIMESTAMP | SQL_TINYINT |
SQL_VARBI NARY | SQL_VARCHAR} [(<precision, length or scale paranmeters>)]

The CONVERT function is a JDBC escape function, equivalent to the SQL standard CAST expression. It converts
the<val ue expr >intothegiven<dat a t ype> andreturnsthevalue. The<dat a t ype> optionsare synthetic
names made by prefixing type names with SQL_. Some of the <dat a t ype> options represent valid SQL types,
but some are based on non-standard type names, namely { SQL_LONGNVARCHAR | SQ._LONGVARBI NARY |
SQL_LONGVARCHAR | SQL_TI NYI NT }. None of the synthetic names can be used in any other context than
the CONVERT function.

The definition of CONVERT in the JDBC Standard does not allow the precision, scale or length to be specified. This
isrequired by the SQL standard for BINARY, BIT, BLOB, CHAR, CLOB, VARBINARY and VARCHAR typesand
is often needed for DECIMAL and NUMERIC. Defaults are used for precision.

219

HyperS@L Built In Functions

HyperSQL also allows the use of real type names (without the SQL__ prefix). In this usage, HyperSQL allows the use
of precision, scale or length for the type definition when they are valid for the type definition.

When MS SQL Server compatibility mode is on, the parameters of CONVERT are switched and only the real type
names with required precision, scale or length are allowed. (JDBC)

DECODE

DECODE(<val ue expr main>, <value expr match 1>, <value expr result 1> [...,]
[, <value expr default>])

DECODE takes at least 3 arguments. The<val ue expr nmai n>iscompared with <val ue expr match 1>
and if it matches, <val ue expr result 1>isreturned. If there are additional pairsof <val ue expr match
n>and <val ue expr result n>, comparison is repeated until a match is found the result is returned. If no
match isfound, the <val ue expr defaul t >isreturnedif it is specified, otherwise NULL isreturned. The type

of the return value is a combination of the types of the<val ue expr result ... >arguments. (HyperSQL)
GREATEST
GREATEST(<val ue expr 1>, [<value expr ...> ...])

The GREATEST function takes one or more arguments. It compares the arguments with each other and returns the
greatest argument. The return type is the combined type of the arguments. Arguments can be of any type, so long as
they are comparable. (HyperSQL)

IFNULL
ISNULL
I FNULL | ISNULL (<val ue expr 1>, <value expr 2>)

Returns<val ue expr 1> ifitisnot null, otherwisereturns<val ue expr 2>. Thetype of the return valueis
thetype of <val ue expr 1>. Almost equivalent to SQL Standard COALESCE(<val ue expr 1>, <val ue
expr 2>) function, but without type modification. (JDBC)

LEAST
LEAST(<val ue expr 1>, [<value expr ...> ...])

The LEAST function takes one or more arguments. |t compares the arguments with each other and returnsthe smallest
argument. The return type is the combined type of the arguments. Arguments can be of any type, so long as they are
comparable. (HyperSQL)

LOAD FILE
LOAD FILE (<char value expr 1> [, <char val ue expr 2>])

Returns a BLOB or CLOB containing the URL or file path specified in the first argument. If used with a single
argument, the function returns a BLOB. If used with two arguments, the function returns a CLOB and the second
argument is the character encoding of the file.

Thefilepathisinterpreted the sameway asaTEXT TABLE sourcefilelocation. Thehsql db. al | ow ful | _path
system property must be sett r ue in order to access files outside the directory structure of the database files.

(HyperSQL)
NULLIF

220

HyperS@L Built In Functions

NULLI F(<val ue expr 1>, <value expr 2>)

Returns <val ue expr 1> if itisnot equal to <val ue expr 2>, otherwise returns null. The type of both
arguments must be the same. This function is a shorthand for a specific CASE expression. (Foundation)

NVL
NVL(<val ue expr 1>, <value expr 2>)

Returns<val ue expr 1> ifitisnot null, otherwisereturns<val ue expr 2>. Thetype of thereturn valueis
thetypeof <val ue expr 1>.For example, if <val ue expr 1>isanINTEGER columnand<val ue expr
2> isa DOUBLE constant, the return typeis cast into INTEGER. Thisfunctionis similar to IFNULL. (HyperSQL)

NVL2
NVL2(<val ue expr 1>, <value expr 2>, <value expr 3>)

If <val ue expr 1>isnotnull, returns<val ue expr 2>, otherwisereturns<val ue expr 3>. Thetype of
thereturn valueisthe type of <val ue expr 2> unlessitisnull. (HyperSQL)

UuID
UUD ([{ <char value expr> | <binary value expr>1] })

With no parameter, this function returns a new UUID value as a 16-byte binary value in the UUID type. With a
UUID hexadecimal string argument, it returns the 16-byte binary value in UUID. With a 16-byte binary or UUID
argument, it returns the formatted UUID character representation. Note UUID is a type derived from BINARY (16)
that in represented as a hexadecimal character string with the reguired hyphens. (HyperSQL)

NEWID

NEW D ()

Thisisasynonym for the no-arg UUID function in MSS compatibility mode. (HyperSQL)
SYS GUID

SYS_GUID ()

Returns a UUID value as a 16 byte binary value in ORA compatibility mode. (HyperSQL)

System Functions

CRYPT_KEY
CRYPT_KEY(<val ue expr 1>, <val ue expr 2>)

Returns a binary string representation of a cryptography key for the given cipher and cryptography provider. The
cipher specification is specified by <val ue expr 1> andtheprovider by <val ue expr 2>.To usethe default
provider, specify null for <val ue expr 2>.(HyperSQL)

DIAGNOSTICS
DI AGNOSTI CS (ROW_COUNT)

Thisis a convenience function for use instead of the GET DI AGNOSTI CS . .. statement. The argument specifies
the name of the diagnostics variable. Currently the only supported variable is the ROW COUNT variable. The function

221

HyperS@L Built In Functions

returns the row count returned by the last executed statement. The return valueis 0 after most statements. Calling this
function immediately after executing an INSERT, UPDATE, DELETE or MERGE statement returns the row count
for the last statement, asit is returned by the JDBC statement. (HyperSQL)

IDENTITY
| DENTI TY ()

Returnsthelast IDENTITY valueinserted into arow by the current session. The statement, CALL IDENTITY () can be
made after an INSERT statement that inserts arow into atable with an IDENTITY column. The CALL IDENTITY()
statement returnsthe last IDENTITY value that wasinserted into atable by the current session. Each session manages
this function call separately and is not affected by insertsin other sessions. The statement can be executed as a direct
statement or a prepared statement. (HyperSQL)

DATABASE

DATABASE ()

Returns the file name (without directory information) of the database. (JDBC)
DATABASE_NAME

DATABASE_NAME ()

Returns the database name. This name is a 16-character, uppercase string. It is generated as a string based on the
timestamp of the creation of the database, for example HSQLDB32438AEAFB. The name can be redefined by an
admin user but the new name must be all uppercase and 16 characters long. This name is used in log messages with
external logging frameworks. (HyperSQL)

DATABASE_VERSION

DATABASE_VERSI ON ()

Returns the full version string for the database engine. For example, 2.5.0. (JDBC)
USER

USER ()

Equivalent to the SQL function CURRENT _USER. (JDBC)
CURRENT_USER

CURRENT _USER

CURRENT_ROLE

CURRENT _ROLE

SESSION_USER

SESSI ON_USER

SYSTEM_USER

SYSTEM _USER

CURRENT_SCHEMA

222

HyperS@L Built In Functions

CURRENT_SCHEMA

CURRENT_CATALOG

CURRENT_CATALOG

These functions return the named current session attribute. They are all SQL Standard functions.

The CURRENT_USER is the user that connected to the database, or a user subsequently set by the SET
AUTHORIZATION statement.

SESSION_USER isthe same as CURRENT_USER

SYSTEM_USER is the user that connected to the database. It is not changed with any command until the session
is closed.

CURRENT_SCHEMA is default schema of the user, or a schema subsequently set by the SET SCHEMA command.
CURRENT_CATALOG isawaysthe same within agiven HyperSQL database and indicates the name of the catal og.
IS AUTOCOMMIT

| S_AUTOCOW T()

Returns TRUE if the session is in auto-commit mode. (HyperSQL)

IS READONLY_SESSION

| S READONLY_SESSI ON()

Returns TRUE if the session isin read only mode. (HyperSQL)

IS READONLY_DATABASE

| S READONLY_ DATABASE()

Returns TRUE if the database is aread only database. (HyperSQL)

IS READONLY_DATABASE_FILES

| S_ READONLY_DATABASE_FI LES()

Returns TRUE if the database is aread-only files database. In this kind of database, it is possible to modify the data,
but the changes are not persisted to the database files. (HyperSQL)

ISOLATION_LEVEL
| SOLATI ON_LEVEL()

Returns the current transaction isolation level for the session. Returns either READ COMMITTED or
SERIALIZABLE asastring. (HyperSQL)

SESSION_ID
SESSI ON_| IX)

Returns the id of the session as a BIGINT value. Each session id is unique during the operational lifetime of the
database. Id's are restarted after a shutdown and restart. (HyperSQL)

223

HyperS@L Built In Functions

SESSION_ISOLATION_LEVEL
SESSI ON_| SOLATI ON_LEVEL()

Returns the default transaction isolation level for the current session. Returns either READ COMMITTED or
SERIALIZABLE asastring. (HyperSQL)

DATABASE_ISOLATION_LEVEL
DATABASE_| SOLATI ON_LEVEL()

Returns the default transaction isolation level for the database. Returns either READ COMMITTED or
SERIALIZABLE asastring. (HyperSQL)

TRANSACTION_SIZE
TRANSACTI ON_SI ZE()

Returnsthe row change count for the current transaction. Each row change representsarow INSERT or arow DELETE
operation. There will be apair of row change operations for each row that is updated.

TRANSACTION_ID
TRANSACTI ON_| DX)

Returns the current transaction ID for the session as a BIGINT value. The database maintains a global incremental
id which is allocated to new transactions and new actions (statement executions) in different sessions. Thisvalue is
unique to the current transaction. (HyperSQL)

TRANSACTION_UTC
TRANSACTI ON_UTCY()

Returnsthe transaction timestamp in UTC time zone for the session. Thistimestamp isused in updates made to system-
versioned tables during the transaction. (HyperSQL)

ACTION_ID
ACTI ON_I DY)

Returnsthe current action ID for the session asaBIGINT value. The database maintains aglobal incremental id which
is allocated to new transactions and new actions (statement executions) in different sessions. This value is unique to
the current action. (HyperSQL)

TRANSACTION_CONTROL
TRANSACTI ON_CONTROL()

Returns the current transaction model for the database. Returns LOCKS, MVLOCKS or MVCC as a string.
(HyperSQL)

LOB_ID
LOB I D <columm reference>)

Returnsinternal ID of alob asaBIGINT value. Lob ID's are unique and never reused. The <column reference> isthe
name of the column (or variable, or argument) whichisaCLOB or BLOB. Returnsnull if thevalueisnull. (HyperSQL)

224

HyperS@L Built In Functions

ROWNUM
ROANUM)
ROW_NUMBER

ROW NUVBER() OVER()

Returns the current row number (from 1) being processed in a select statement. This has the same semantics as the
ROWNUM pseudo-column in ORA syntax mode, but can be used in any syntax mode. The function is used in a
SELECT or DELETE statement. The ROWNUM of arow isincremented as the rows are added to the result set. It is
therefore possible to use a condition such as WHERE ROWNUM() < 10, but not ROWNUM() > 10 or ROWNUM
=10. The ROW NUMBER() OVER() alternative performs the same function and is included for compatibility with
other database engines.(HyperSQL)

225

HyperS@L

Chapter 11. System Management

Fred Toussi, The HSQL Development Group

$Revision: 6146 $
Copyright 2002-2020 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group

to distribute this document with or without alterations under the terms of the HSQLDB license.
2020-06-29

Modes of Operation

HyperSQL has many modes of operation and features that allow it to be used in very different scenarios. Levels of
memory usage, speed and accessibility by different applications are influenced by how HyperSQL is deployed.

Deployment Types

The decision to run HyperSQL as a separate server process or as an in-process database should be based on the
following:

* When HyperSQL is run as a server on a separate machine, it isisolated from hardware failures and crashes on the
hosts running the application.

» When HyperSQL isrun as a server on the same machine, it isisolated from application crashes and memory leaks.

* Server connections are slower than in-process connections due to the overhead of streaming the datafor each JIDBC
cal.

» You can access a Server from outside the main application and perform backups and other maintenance operations.
» You can reduce client/server traffic using SQL Stored procedures to reduce the number of JDBC execute calls.

» During development, it is better to use a Server with ser ver. si | ent =f al se, which displays the statements
sent to the server on the console window.

» Toimprove speed of execution for statementsthat are executed repeatedly, reuse aparameterized PreparedStatement
for the lifetime of the connections.

Database Types

There are three types of database, mem;, file: and res:. The mem: typeis stored all in memory and not persisted tofile.
Thefile: typeispersistedtofile. Theres: typeisalso based onfiles, but the files are loaded from the classpath, similar
to resource and class files. Changes to the datain file: databases are persisted, unless the database isr eadonl y, or
fil es_readonly (using optional property settings). Changesto res: databases are not persisted.

Readonly Databases

A file: catalog can be made readonly permanently, or it can be opened as readonly. To make the database readonly, the
property, value pair, r eadonl y=t r ue can be added tothe. pr oper ti es file of the database. The SHUTDOWN
command must be used to close the database before making this change.

226

HyperS@L System Management

It is also possible to open a normal database as readonly. For this, the property can be included in the URL of the
first connection to the database.

With readonly databases, it is still possible to insert and delete rowsin TEMP tables.

RES and Files Readonly Databases

There is another option which allows MEMORY tables to be writeable, but without persisting the changes at
SHUTDOWN. Thisoptionisactivated with the property, valuepair,f i | es_r eadonl y=t r ue, which can be added
tothe. properti es file of the database, or included in the URL of the first connection to the database.

A res. catalog, is a set of database files on the classpath (inside a jar or alongside class files). The database is
opened with a URL in the form of j dbc: hsql db: res: <dat abase pat h>. These databases are aways
fil es_readonl y and have the sameredtrictionsasf i | es_r eadonl y file: catalogs.

CACHED tables and LOBS in these catalogs are readonly. It is not possible to create new LOBs in these catal ogs,
but you can use existing LOBs in new rows.

These options are useful for running application tests which operate on a predefined dataset.

Tables

TEXT tables are designed for special applications where the data hasto be in an interchangeable format, such as CSV
(comma separated values). TEXT tables should not be used for routine storage of data that changes alot.

MEMORY tables and CACHED tables are generally used for data storage. The difference between the two is as
follows:

e Thedatafor all MEMORY tablesisreadfromthe*. scri pt filewhenthedatabaseisstarted and stored in memory.
In contrast the data for cached tables is not read into memory until the table is accessed. Furthermore, only part of
the data for each CACHED tableis held in memory, allowing tables with more data than can be held in memory.

» When the database is shutdown in the normal way, all the data for MEMORY tables is written out to the disk. In
comparison, the datain CACHED tables that has changed is written out during operation and at shutdown.

» Thesize and capacity of the data cache for all the CACHED tables is configurable. This makes it possible to allow
al the datain CACHED tables to be cached in memory. In this case, speed of access is good, but slightly slower
than MEMORY tables.

» For normal applications it is recommended that MEMORY tables are used for small amounts of data, leaving
CACHED tablesfor large data sets. For special applicationsin which speed is paramount and alarge amount of free
memory is available, MEMORY tables can be used for large tables as well.

* You can change the type of the table with the SET TABLE <table nane> TYPE { CACHED |
MEMORY } statement.

Large Objects

HyperSQL supports dedicated storage and access to BLOB and CLOB objects. These objects can have huge sizes.
BLOB or CLOB is specified as the type of acolumn of the table. Afterwards, rows can be inserted into the table using
aPreparedStatement for efficient transfer of large LOB data to the database. In mem: catalogs, CLOB and BLOB data
is stored in memory. In file: catalogs, this data is stored in a single separate file which has the extension *. | obs.
The size of thisfile can grow to terabyte figures. By default, a minimum 32 KB is allocated to each LOB. You can
reduce thisif your LOBs are generally smaller.

227

HyperS@L System Management

L OB data should be stored in the database using a JDBC PreparedStatement object. The streaming methods send the
LOB to the database in one operation as a binary or character stream. Inside the database, the disk space is allocated
as needed and the datais saved as it is being received. LOB data should be retrieved from the database using a JDBC
ResultSet method. When a streaming method is used to retrieve aLOB, it isretrieved in large chunks in a transparent
manner. LOB data can also be retrieved as String or byte]], but these methods use more memory and may not be
practical for large objects.

LOB datais not duplicated in the database when alob is copied from one table to another. The disk space is reused
when aLOB isdeleted and is no longer contained in any table. This happens only at the time of a CHECKPOINT.

Withal-in-memory mem: databases, the memory spacefor deleted lobsisnot reused by default, asthereisno automatic
checkpoint. Automatic checkpoints can be activated by setting the LOG SIZE property to a value larger than zero.
When the accumulated size of deleted lobs reaches the LOG SIZE setting (in megabytes) an automatic checkpoint is
performed and the memory space is released.

By using adedicated L OB store, HyperSQL achieves consistently high speeds (usually over 20MB / s) for both storage
and retrieval of LOBs.

Thereisan internal LOBS schemain the database to store the id's, sizes and addresses of the LOBs (but not the actual
LOBS) in a few system tables. This schema is stored in the database as MEMORY tables. Therefore, the amount
of VM memory should be increased when more than tens of thousands of LOBs are stored in the database. If your
database contains more than afew hundreds of thousands of L OBs and memory use becomes an issue, you can change
oneor al LOB schematablesto CACHED tables. See statements below:

Example 11.1. Using CACHED tablesfor the LOB schema

SET TABLE SYSTEM LOBS. BLOCKS TYPE CACHED
SET TABLE SYSTEM LOBS. LOBS TYPE CACHED
SET TABLE SYSTEM LOBS. PARTS TYPE CACHED
SET TABLE SYSTEM LOBS. LOB_| DS TYPE CACHED

Deployment context

The files used for storing HyperSQL database data are al in the same directory. New files are always created and
deleted by the database engine. Two simple principles must be observed:

» The Java process running HyperSQL must have full privileges on the directory where the files are stored. This
include create and delete privileges.

» Thefile system must have enough spare room both for the ‘permanent’ and ‘temporary' files. The default maximum
sizeof the*. | og fileis50MB. The* . dat a file can grow to up to 64GB (more if the default has been increased).
The*. backup filecan beuptothesize of the*. dat a file. The*. | obs file can grow to several terabytes. The
temporary files created at the time of a SHUTDOWN can be equal insizetothe*. scri pt fileandthe*. dat a
file

* In desktop deployments, virus checker programs may interfere with the creation and modification of database files.
Y ou should exclude the directory containing the database files from virus checking.

ACID, Persistence and Reliability

HyperSQL's persistence mechanism has proven reliable, as the last critical issue was fixed 2 years before the release
of version 2.0.

There are further enhancements in the latest version.

228

HyperS@L System Management

» More extensive locking mechanism has been added to code to support multithreaded access.

* Incremental backup (an internal mechanism for crash protection) allows fast checkpoint and shutdown.

All files are synced at checkpoints and also just before closing.

The datafileis enlarged in block increments

The NIO file access implementation has been improved

Persistence relies on the VM, the operating system, and the computer hardware. A database system like HyperSQL
can perform millions of read and write operations in an hour. As system hardware and software can go wrong, it is
impossibleto achieve zero failure rate. Therefore, regular backups are recommended. HyperSQL has built-in database
backup and restore features, discussed elsewhere in this chapter.

A note regarding the NIO file access implementation: Thisimplementation applies only to CACHED table datain the
. dat a file. Other files are not accessed viaNIO. There has been an issue with some JVM implementations of nio not
releasing the file buffers after they were closed. HyperSQL uses aworkaround which isrecommended for Sun VM's.
This does not apply to other WVM's. In such environments, it is therefore recommended to test the CHECKPOINT
DEFRAG operation and the shutting down and restarting the database inside the same Java process extensively with
NIO. Use of NIO is not essential and can be turned off if necessary.

Atomicity, Consistency, Isolation, Durability

Atomicity means a transaction either fails without changing the data, or succeeds. HyperSQL ensures atomicity both
during operations and in the event of a system crash.

Consistency means al the implicit and explicit integrity constraints are always enforced. HyperSQL always enforces
the constraints and at the same time does not allow unenforceable constraints (illegal forms of CHECK constraints)
to be created.

I solation means transactions do not interfere with each other. HyperSQL enforces isolation according to strict rules
of the database isolation model (MVCC or LOCKYS).

Durability means a committed transaction is protected in case of a system crash. HyperSQL ensures durability
according to the setting for WRITE DELAY MILLIS. A zero delay setting results in an FileDescriptor#sync() call
each time atransaction commits. A timed delay means the FileDescriptor#sync() call isexecuted in the givenintervals
and only the last transactions committed in the time interval may be lost. The default time interval is 0.5 second. The
sync() call is also made at all critical points, including when afile is about to be closed. Durability of files requires
areliable VM and disk storage system that stores the data safely with a sync() call. In practice, many systems are
generaly reliable in this respect.

System Operations

A database is opened when the first connection is successfully made. It remains open until the SHUTDOWN command
isissued. If the connection property shutdown=true is used for the first connection to the database, the database is
shutdown when the last connection is closed. Otherwise the database remains open and will accept the next connection
attempt.

The SHUTDOAN command shuts down the database properly and allows the database to be reopened quickly. This
command may take some seconds as it saves all the modified data in the .scri pt and . dat a files. Variants of
SHUTDOWN such as SHUTDOWN COMPACT and SHUTDOWN SCRI PT can be used from time to time to reduce the
overall size of the database files. Another variant is SHUTDOAN | MVEDI ATELY which ensures al changes to data
are stored in the . | og file but does not save the changesin .scri pt and. dat a files. The shutdown is performed
quickly but the database will take much longer to reopen.

229

HyperS@L System Management

During the lifetime of the database the checkpoint operation may be performed from time to time. The SET FI LES
LOG Sl ZE < val ue > setting and its equivalent URL property determine the frequency of automatic checkpoints.
An online backup also performs a checkpoint when the backup is not a hot backup. A checkpoint can be performed by
the user at any time using the CHECKPQO NT statement. The main purpose of checkpointsisto reduce the total size of
database files and to allow aquick restart in case the database is closed without a proper shutdown. The CHECKPO NT
DEFRAG variant compacts the . dat a filein asimilar way to SHUTDOAN COMPACT does. Obviously, this variant
takes much longer than anormal CHECKPO NT. A database setting allowsa CHECKPO NT DEFRAGto be performed
automatically when wasted space inthe . dat a file exceeds the specified percentage.

In a multi-user application, automatic or user-initiated checkpoints are delayed until al other sessions have
committed or rolled back. During a checkpoint, other sessions cannot access the database tables but can access the
| NFORMATI ON_SCHENA system tables.

Temporal System-Versioned Tables

HyperSQL 2.5 and later allows you to store data in temporal system-versioned tables. The additional syntax elements
for CREATE TABLE and ALTER TABLE allow creating system-versioned tables and adding system versioning to
existing tables. These are covered inthe Schemas and Database Objects chapter. Only CACHED or MEMORY tables
can be system-versioned.

System versioning has three main uses.

1. During development and testing of applications, system-versioning keeps all the changes made by a set of
integration tests. Correctness of the data change statements can be verified.

2. Retention of data for regulatory requirements can be safely managed by the database engine, without the need for
additional complexity in the application.

3. Replicated distributed databases with system versioning on all tables allow changes to data to be synchronized
between the replicas.

All SQL statements that access the table see the current rows of the table only. SELECT statements can include a
FOR SYSTEM_TIME clause to access historic data in a given timestamp range. This is discussed in Data Access
and Change chapter.

Old historic rows can be removed up to achosen point of time with aspecial form of the TRUNCATE statement. This
iscovered inthe Data Access and Change chapter.

For replicated databases, data changes after a point of time can be written to a script and applied to a replica. See
the PERFORM SCRIPT statement in this chapter. The timestamp used for export is the timestamp at the point of last
synchronization. For example, if the first EXPORT occurs at TIMESTAMP '2019-01-01 10:10:10" and the script is
later imported into the replica, the second EXPORT should use that timestamp. This ensures old histories that have
already been exported are not exported again. The import will skip duplicates and there is no harm in exporting from
an earlier timestamp, except it will take longer to import.

An example follows:

Example 11.2. Creating a system-versioned table

CREATE TABLE codedata (

code CHAR(10) not null,

id SMALLI NT not nul |

primary key (1D),

PS TI MESTAMP GENERATED ALWAYS AS ROW START,
PE TI MESTAMP GENERATED ALWAYS AS ROW END,

230

HyperS@L System Management

PERI OD FOR SYSTEM TI ME(PS, PE)
) W TH SYSTEM VERSI ONI NG

Using Table Spaces

Datafor all CACHED tablesis stored inthe . dat a file. With new optional setting, HyperSQL 2.5 and later allocates
separate blocks of the data file to different CACHED tables. This method has the following advantages:

» When atableis dropped, all its data allocation blocks are freed and become available for reuse.
» When old rows are deleted in bulk, the space isimmediately released and reused.

» Whenmany rowsare updated over along period, the disk space occupied by theold versions of therowsiseventually
freed.

The following statement should be executed once to start the table spaces for the whole database:

SET FI LES SPACE TRUE

Then the statement below should be executed for each CACHED table that will have its own space:

SET TABLE <t abl e name> NEW SPACE

If the above statement is not executed, the table is stored in common blocks shared by a number of tables.

If either of the above statements is executed again after the first time, it does not change any settings.

Itisbetter to set any tablethat isknown to grow larger than several hundred rowsits own space beforeany dataisstored.
If the above commands are executed when there are already some rows in any CACHED table, the change does not
happen immediately. In this case, the table spaces are created only when CHCKPOINT DEFRAG, SHUTDOWN
COMPACT or SHUTDOWN SCRIPT is executed.

The size of the file block is 2MB when the hsgldb.cache file scale is the default 32 (the size doubles as the scale
doubles). It is possible to reduce the block size to IMB for databases that contain many small tables that use their
own, dedicated spaces. The statement SET FI LES SPACE 1 can be executed instead of SET FI LES SPACE
TRUE for areduced block size.

Asthetablegrowsin size, more blocks are allocated to the table. These blocks are allocated from the freed file blocksif
thereisany available. TheINFORMATION_SCHEMA.SYSTEM_TABLESTATS providesinformation on the space

usage of table spaces. In this table, the SPACE_ID column contains the space id for the table. The value 1 is used for
the space allocated to directory structures. The value 7 is for tables that use the common space.

Checking Database Tables and Indexes

From version 2.5.1, the integrity of the indexes and table data can be checked with a command. This applies to
CACHED tables only. Individual tables or al tables can be checked.

‘ PERFORM CHECK TABLE PUBLI C. CUSTOMER | NDEX [AND FI X] ‘

| PERFORM CHECK ALL TABLE | NDEX [AND FIX] |

231

HyperS@L System Management

The command reads and compares all the rows and lists the size of each table and the size of each index on the table.
If an index is damaged, the list shows the number of rows that could be read as different from the number of rowsin
the table. With large tables, it can take along time to compl ete.

It is possible to execute the command with the addition of AND FI X to the end. If some indexes have been damaged
but at least oneindex on atable is undamaged, this should fix the problem and if the command is run again, it should
show no damage.

Backing Up and Restoring Database Catalogs

Thedatabase engine savesthefiles containing all the datain afile catal og when ashutdown takesplace. It automatically
recovers from an abnormal termination and preserves the data when the catalog is opened next time. In an ideal
operating environment, where there isno OS crash, disk failure, bugsin code, etc., there would be no need to back up
adatabase. Backing up catalogsis an insurance policy against all sorts of misadventure that are not under the control
of the database engine.

The data for each catalog consists of up to 5 files in the same directory with the endings such as* . properti es,
* . scri pt, etc., asdetailed in previous chapters.

HyperSQL features commands to back up the database files into a single . tar or . tar. gz file archive, or
aternatively as copies of the database files. The backup can be performed by a command given in aJDBC session if
the target database catalog is running, or on the command-line if the target catalog has been shutdown.

It is not recommended to back up the database file with an external file backup program while the database is running.
The resulting backup will probably be inconsistent and not useful for restoring the database

Making Online Backups

To back up arunning catalog, obtain a JDBC connection and issue a BACKUP DATABASE command in SQL. In
its most simple form, the command format below will back up the database asasingle . t ar . gz file to the given
directory. Thistype of backup performs a checkpoint immediately before backing up the files.

| BACKUP DATABASE TO <directory name> BLOCKING [AS FILES] |

The directory name must end with aslash to distinguish it as adirectory, and the whole string must be in single quotes
likeso: ' subdir/nesteddir/"'.

Normal backup may take along time with very large databases. Hot backup may be used in those situations. Thistype
of backup does not perform a checkpoint and allows access to the database while backup isin progress.

| BACKUP DATABASE TO <directory name> NOT BLOCKING [AS FILES] |

If you add AS FILES to the statements, the database files are backed up as separate files in the directory, without any
gzip compression or tar archiving.

See the next section under Statements for details about the command and its options. See the sections below about
restoring a backup.

Offline Backup Utility Syntax

The DbBackup class is used from the command-line to make offline backups and to restore backups. Here is how
to see all options for DbBackup.

232

HyperS@L System Management

Example 11.3. Displaying DbBackup Syntax

‘ java -cp hsqldb.jar org.hsqgldb.lib.tar.DbBackupMai n

Making Offline Backups

To back up an offline catal og, the catalog must be in shut down state. Y ou will run a Java command like this. In this
exampl e, the database is named dbname and isin the dbdir directory. The backup is saved to afile named backup.tar
inthe tardir directory.

Example 11.4. Offline Backup Example

‘ java -cp hsqldb.jar org.hsqgldb.lib.tar.DbBackupMain --save tardir/backup.tar dbdir/dbnanme

wheret ar di r/ backup. t ar isafilepathtothe*.tar or*.tar. gz fileto be created in your file system, and
dbdi r / dbname isthefile path to the catalog file base name (in samefashionasinser ver . dat abase. * settings
and JDBC URLs with catalog typefile:.

Examining Backups

You can list the contents of backup tar files with DbBackup on your operating system command line, or with any
Pax-compliant tar or pax client (thisincludes GNU tar),

Example 11.5. Listing a Backup with DbBackup

‘ java -cp hsqgldb.jar org. hsqgldb.lib.tar.DbBackupMain --1ist tardir/backup.tar ‘

You can aso give regular expressions at the end of the command line if you are only interested in some of the file
entries in the backup. Note that these are real regular expressions, not shell globbing patterns, so you would use .
+scri pt tomatch entriesending in "script”, not *scri pt .

Y ou can examine the contents of the backup in their entirety by restoring the backup, as explained in the following
section, to atemporary directory.

Restoring a Backup

You use DbBackup on your operating system command line to restore a catalog from a backup.

Example 11.6. Restoring a Backup with DbBackup

‘ java -cp hsqldb.jar org.hsqgldb.lib.tar.DbBackupMain --extract tardir/backup.tar dbdir ‘

wheret ar di r/ backup. t ar isafilepath to the *.tar or *.tar.gz fileto be read, and dbdi r isthetarget directory
to extract the catalog files into. Note that dbdi r specifies a directory path, without the catalog file base name. The
fileswill be created with the names stored in the tar file (and which you can see as described in the preceding section).
After restoring the database, you can connect to it as usual .

Encrypted Databases

HyperSQL supports encrypted databases. Encryption services use the Java Cryptography Extensions (JCE) and uses
the ciphersinstalled with the JRE. HyperSQL itself does not contain any cryptography code.

233

HyperS@L System Management

Four elements are involved in specifying the cryptography mode of operation.

» A cipherisidentified by atransformation string of the form "algorithm/mode/padding” or simply "agorithm". Note
The latter form uses the provider default mode and padding.

* A key isrepresented as a hexadecimal string.

An optiona initialization vector, for modes of operation that use an 1V, is represented as a hexadecimal string.
» Anoptiona provider isthe fully qualified class name of the cipher provider.

The parameters, including the name of the cipher and the key, are all specified in the database connection URL No
key or other parameter is stored in the database files.

Creating and Accessing an Encrypted Database

First, a key must be created for the desired cipher and configuration using an external tool, such as opensd, or by
calling the HyperSQL function CRYPT_KEY (<cipher spec>, <provider>). If the default provider (the built-in VM
ciphers) is used, then NULL should be specified as the provider. The CRYPT_KEY function returns a hexadecimal
key. The function call can be made in any HyperSQL database, so long as the provider classis on the classpath. This
key can be used to create a new encrypted database. Calls to this function always return different keys, based on
generated random values.

Asan example, acal to CRYPT_KEY (‘Blowfish', null) returned the string, '604a6105889da65326bf35790a923932'.
To create a new database with this key, the URL below is used:

j dbc: hsql db: fil e: <dat abase
pat h>; crypt _key=604a6105889da65326bf 35790a923932; crypt _t ype=bl owfi sh

HyperSQL works with any symmetric cipher and transformation that may be available from the VM. Some modes of
operations require an initialization vector (IV) to be passed in as a hex string. This hex string can be generated using
an external tool, such as opensdl, or randomly generated by the user.

jdbc: hsqgl db: fil e: <dat abase
pat h>; crypt _key=604a6105889da65326bf 35790a923932; crypt _i v=9AB7A109507CD27BEADA2 AE59BCEEF08
CBC/ PKCS5Paddi ng

The fourth property nameis crypt_provider. Thisis specified only when the provider is not the default provider.
Note: Do not use these example crypt_key or crypt_iv valuesin production. Create your own random values.

The files that are encrypted include the . scri pt, . dat a, . backup and . | og files. In version 2.5 and later, the
. | obs fileisalso encrypted by default and the blobs and clobs are both compressed and encrypted. Y ou can override
this with the property cr ypt _| obs=f al se on the URL. Earlier versions of HSQLDB did not support encrypted
lobs, and in some versions the default for this property was false. Y ou will need to set the property to false to open
those databases.

Although the details of external tools are outside the scope of this document, openssl may be used to generate
sufficiently random keys and initialization vectors for agiven crypt_type using the following syntax:

openssl enc -aes-128-cbc -k RANDOM PASSPHRASE - P -nd sha256

Speed Considerations

General operations on an encrypted database are performed the same as with any database. However, some operations
are significantly slower than with the equivalent clear text database. With MEMORY tables, there is no difference

234

HyperS@L System Management

to the speed of SELECT statements, but data change statements are slower. With CACHED tables, the speed of all
statementsis slower.

Security Considerations

Security considerations for encrypted databases have been discussed at length in HyperSQL discussion groups.
Development team members have commented that encryption is not a panacea for all security needs. The following
issues should be taken into account:

» Encrypted files are relatively safe in transport, but because databases contain many repeated values and words,
especially known tokens such as CREATE, INSERT, etc., breaking the encryption of a database may be simpler
than an unknown file.

» Only thefiles are encrypted, not the memory image. Peeking into computer memory, while the database is open,
will expose the contents of the database.

» HyperSQL is open source. Someone who has the key, can compile and use a modified version of the program that
saves a full clear text dump of an encrypted database. Therefore, encryption is generally effective only when the
users who have access to the crypt key are trusted.

Monitoring Database Operations

Database operations can be monitored at different levels using internal HyperSQL capabilities or add-ons.

External Statement Level Monitoring

Statement level monitoring alows you to gather statistics about executed statements. HyperSQL is supported by
the monitoring tool JAMon (Java Application Monitor). JAMon is currently developed as the SourceForge project,
jamonapi.

JAMon works at the JDBC level. It can monitor and gather statistics on different types of executed statements or other
JDBC cdlls.

Early versions of JAMon were devel oped with HyperSQL and had to be integrated into HyperSQL at code level. The
latest versions can be added on as a proxy in a much simpler fashion.

Internal Statement Level Monitoring

Theinternally generated, individual SQL log for the database can be enabled with the SET DATABASE EVENT LOG
SQL LEVEL statement, described in this chapter. As all the executed statements are logged, there is a small impact
on speed. So you should only use this for debugging. Two levels of SQL logging are supported.

Internal Event Monitoring

HyperSQL can log important internal events of the engine. These events occur during the operation of the engine, and
are not always coupled with the exact type of statement being executed. Normal events such as opening and closing
of files, or errors such as OutOfMemory conditions are examples of logged events.

HyperSQL supports two methods of logging. One method is specific to the individual database and is managed
internally by HyperSQL. The other method is specific to VM and is managed by alogging framework.

The internally-generated, individual log for the database can be enabled with the SET DATABASE EVENT LOG
LEVEL statement, described in this chapter. Thismethod of logging isvery useful for desktop application deployment,
asit provides an ongoing record of database operations.

235

HyperS@L System Management

Log4J and JDK logging

HyperSQL also supportslog4Jand JDK |ogging. The same event information that is passed to theinternal log, is passed
to external logging frameworks. These frameworks are typically configured outside HyperSQL. The log messages
include the string "hsgldb.db.” followed by the unique id (a 16 character string) of the database that generated the
message, so they can be identified in a multi-database server context.

As the default JIDK logging framework has several shortcomings, HyperSQL configures this logging framework for
better operation. If you do not want HyperSQL to configurethe JDK logging framework, you should include the system
level property hsql db. reconfi g_I oggi ng=f al se inyour environment.

Server Operation Monitoring

A Server or WebServer instance can be started with the property ser ver. si | ent =f al se. This causes all the
connections and their executed statements to be printed to stdout as the statements are submitted to the server.

Database Security

HyperSQL has extensive security features which are implemented at different levels and covered in different chapters
of thisguide.

1. Theserver canuse SSL and | P address access control lists. Seethe HyperSQL Network Listeners(Servers) chapter.

2. You can define a system property to stop the database engine accessing the Java static functions that are on the
classpath, apart from a limited set that you allow. See Securing Access to Classes in the SQL-Invoked Routines
chapter.

3. You can define a system property to allow access to files on the file system outside the database directory and its
children. This access is only necessary if you use TEXT tables or want to load and save files directly to the file
system as BLOB or CLOB. Seethe Text Tables chapter.

4. The database files can be encrypted. Discussed in this chapter.
5. Within the database, the DBA privileges are required for system and maintenance jobs.

6. You can define users and roles and grant them access on different database objects. Each user has apassword and is
granted a set of privileges. HyperSQL supportstable level, column level, and row level privileges. Seethe Access
Control chapter.

7. You can define a password complexity check function for new and changed passwords. This is covered below
under Authentication Settings.

8. You can use external authentication such as LDAP instead of internally stored password to authenticate users for
each database. Thisis covered below under Authentication Settings.

HyperSQL security is multi-layered and avoids any loopholes to circumvent security. It is however the user's
responsibility to enable the required level of security.

Basic Security Recommendations

Thedefault settings are generally adequate for embedded use of the database in single-user applications. For serverson
the host that are accessed from the same machine or accessed within anetwork, and especially for those accessed from
outside the network, additional security settings must be used. Thisisthe minimum list of changes you need to make:

 Change the admin password. Change the admin name (the default is SA) aswell for extra security.

236

HyperS@L System Management

 Create a non-admin user for normal database access and grant the required SELECT, INSERT, UPDATE and
DELETE privileges to this user. Connect with this user's credentials from the application.

» Set up SSL and | P address access control on the Server.

Restrict the execution of multiple statements with SET DATABASE SQ. RESTRI CT EXEC TRUE.

Backup the database regularly and store the backupsin a different location than the machine running the Server.

Beyond Security Defaults

The default settings for server and web server do not use SSL or IP access control lists. These features are enabled
programmatically, or with the properties used to start the server.

The default settings allow a database user with the DBA role or with schema creation role to access static functions on
the classpath. Y ou can disablethisfeature or l[imit it to specific classes and methods. This can be done programmatically
or by setting a system property when you start a server.

If accessto specific static functionsis granted, then these functions must be considered as part of the database program
and checked for any security flaws before inclusion in the classpath.

The default settings do not allow a user to access files outside the database directory. This accessis for TEXT table
source files. Y ou can override this programmatically or with a system property when you start a server.

Theencryption of databasefile doesnot utilise any user-supplied information for encryption keys. Thislevel of security
is outside the realm of users and passwords.

The first user for a new database has the DBA role. This user name was always SA in older versions of HyperSQL,
but not in the latest versions. The name of the first DBA user and its password can be specified when the database
is created by the first connection to the database. These settings are then stored in the database. Y ou can aso change
the name after creating the database.

The initial user with the DBA role should be used for admin purposes only. At least one additional role should be
created for normal database use in the application and at |east one additional user should be created and granted this
role. The new role should not be given the DBA role. It can be given the CREATE_SCHEMA role, which alowsit to
create and access multiple schemas. Alternatively, the user with the DBA role can create the schemas and their objects
and then grant specific privileges on the objects to the non-DBA role.

Authentication Control

Authentication is the mechanism that determines if a user can access the database at all. Once authentication is
performed, the authorization mechanism is used to determine which database objects the particular user can access.
The default authentication mechanism is password authentication. Each user is created with a password, which is
stored as a hash in the database and checked each time a new database connection is created.

Password Complexity Check

HyperSQL allows you to define a function that checks the quality of the passwords defined in the database. The
passwords are stored in the database. Each time a user connects, the user's name and password are checked against the
stored list of users and passwords. The connection attempt is rejected if there is no match.

External Authentication

Y ou can use an external authentication mechanism instead of theinternal authentication mechanism. HyperSQL allows
you to define a function that checks the combination of database unique name, user name, and password for each

237

HyperS@L System Management

connection attempt. The function can use external resources to authenticate the user. For example, a directory server
may be used. The password may be ignored if the external resource can verify the user's credential without it.

Y ou can override external authentication for auser with the ALTER USER statement. Seethe Access Control chapter

Statements

System level statements are listed in this section. Statements that begin with SET DATABASE or SET FILES arefor
properties that have an effect on the normal operation of HyperSQL. The effects of these statements are al so discussed
in different chapters.

System Operations

These statements perform a system level action.

SHUTDOWN

shutdown statement

<shut down statenent> ::= SHUTDOMW [| MVEDI ATELY | COWPACT | SCRI PT]

Shutdown the database. If the optional qualifier is not used, a normal SHUTDOWN is performed. A normal
SHUTDOWN ensures all datais saved correctly and the database opens without delay on next use.

SHUTDOWN Normal shutdown saves all the database files, then deletes the . | og file (and
the .backup filein the default mode). This does the same thing as CHECKPOINT, but
closesthe database when it compl etes. The database openswithout delay on next used.

SHUTDOWN Saves the *.log file and closes the database files. This is the quickest form of

IMMEDIATELY shutdown. This command should not be used as the routine method of closing the
database, because when the database is accessed next time, it may take a long time
to start.

SHUTDOWN COMPACT Thisissimilar to normal SHUTDOWN, but reducesthe* . dat a fileto its minimum
size. It can take much longer than normal SHUTDOWN. This shouldn't be used as
routine.

SHUTDOWN SCRIPT This is similar to SHUTDOWN COMPACT, but it does not rewrite the *. dat a
and text table files. After SHUTDOWN SCRIPT, only the *. script and
*. properti es filesremain. At the next startup, these files are processed and the
* . dat a fileis created if there are cached tables. This command in effect performs
part of the job of SHUTDOWN COMPACT, leaving the other part to be performed
automatically at the next startup.

This command produces a full script of the database which can be edited for special
purposes prior to the next startup.

Only a user with the DBA role can execute this statement.
BACKUP DATABASE
backup database statement

<backup dat abase statenent> ::= BACKUP DATABASE TO <file path> [SCRI PT] {[NOT]
COVPRESSED} {[NOT] BLOCKI NG [AS FI LES]

238

HyperS@L System Management

Backup the database to specified <f i | e pat h> for archiving purposes.

The<fil e pat h>canbeintwoforms. If the<fi | e pat h>endswith aforward slash, it specifiesadirectory. In
this case, an automatic name for the archive is generated that includes the date, time and the base name of the database.
The database is backed up to this archive file in the specified directory. The archiveisin. tar. gz or. t ar format
depending on whether it is compressed or not.

If the<fil e pat h> doesnot end with aforward slash, it specifies a user-defined file name for the backup archive.
Thefile extension must be either . t ar. gz or . t ar and this must match the compression option.

The default set of optionsis COMPRESSED BLOCKING.

If SCRIPT is specified, the backup will contain a*. scri pt file, which contain all the data and settings of the
database. This type of backup is suitable for smaller databases. With larger databases, this takes a long time. When
the SCRIPT option is no used, the backup set will consist of the current snapshot of all database files.

If NOT COMPRESSED is specified, the backup is atar file, without compression. Otherwise, it isin gzip format.

The qualifier, BLOCKING, means all database operations are suspended during backup. During backup, a
CHECKPOINT command is silently executed. This modeis always used when SCRIPT is specified.

Hot backup is performed if NOT BLOCKING is specified. In this mode, the database can be used during backup. This
mode should only be used with very large databases. A hot backup set is less compact and takes longer to restore and
use than a normal backup set produced with the BLOCKING option. You can perform a CHECKPOINT just before
a hot backup in order to reduce the size of the backup set.

If ASFILESisspecified, the database files are copied to adirectory specified by <file path> without any compression.
Thefile path must be adirectory. If the directory does not exist, it is created. Thefile path may be absolute or relative.
If it isrelative, it isinterpreted as relative to the location of database files. When AS FILES is specified, SCRIPT or
COMPRESSED options are not available. The backup can be performed as BLOCKING or NOT BLOCKING.

The HyperSQL jar also contains a program that creates an archive of an offline database. It also contains a program
to expand an archive into database files. These programs are documented in this chapter under Backing up Database
Catalogs.

Only auser with the DBA role can execute this statement.

CHECKPOINT

checkpoint statement

<checkpoi nt statenent> ::= CHECKPO NT [DEFRAG

Closes the database files, rewrites the script file, deletes the log file and reopens the database.

If DEFRAGI s specified, also shrinksthe* . dat a fileto its minimum size. CHECKPQO NT DEFRAGtime depends on
the size of the database and can take along time with huge databases.

A checkpoint on a multi-user database waits until all other sessions have committed or rolled back. While the
checkpoint isin progress other sessions are kept waiting. Checkpoint does not close any sessions.

Only auser with the DBA role can execute this statement.
SCRIPT
script statement

<script statenment> ::= SCRIPT [<file nanme>]

239

HyperS@L System Management

Returnsascript containing SQL statementsthat definethe database, itsusers, and itsschemaobjects. If <f i | e nane>
is not specified, the statements are returned in a ResultSet, with each row containing an SQL statement. No data
statements are included in this form. The optional file nameis asingle-quoted string. If <f i | e nanme> is specified,
then the script is written to the named file. In this case, all the datain all tables of the database isincluded in the script
as INSERT statements.

Only auser with the DBA role can execute this statement.

Data Management Statements

These statements allow data to be transferred in bulk from one database to another using files formatted in the same
manner asthe. scri pt files.

EXPORT SCRIPT
export script statement

<export script statenent> ::= PERFORM EXPORT SCRI PT FOR DATABASE [{ STRUCTURE
| DATA }] [WTH COLUWN NAMES] TO <single-quoted file path>

<export script table statenent> ::= PERFORM EXPORT SCRI PT FOR TABLE <t abl e nane>
DATA [W TH COLUWN NAMES] TO <singl e-quouted file path>

<export script for versioning statenment> ::= PERFORM EXPORT SCRI PT FOR DATABASE
VERS| ONI NG DATA FROM Tl MESTAMP <si ngl e-quoted UTC tinestanp string> TO <file
nane>

Writes a script containing SQL statements for the database.

The first form writes the whole database, its structure only, or its data only to the file. When only DATABASE is
specified, everything is written out. When STRUCTURE is specified, only the database settings and the definition
of schema objects are written. When DATA is specified, only the data in the tables is written. The optional W TH
COLUWN NANMES clause includes the list of column names in INSERT statements and may be useful for exporting
data to other database engines. This option should not be used for scripts that are imported into HSQLDB with the
PERFORM | MPORT SCRI PT statement, as the script will be rejected.

The second form writes the data for one table only.

The third form writes the data in all system-versioned tables from a given UTC timestamp. This form is used for
database replica synchronization, to be imported into ancther replica. For synchronization purposes, all system-
versioned tables must have a primary key as those without are not exported. UTC timestamps are used to allow
synchronization across time zones.

Only auser with the DBA role can execute this statement.
IMPORT SCRIPT
import script statement

<inport script statenent> ::= PERFORM | MPORT SCRI PT DATA FROM <si ngl e- quot ed
file path> { CONTINUE | STOP | CHECK } ON ERROR

<inport script for versioning statement> ::= PERFORM | MPORT SCRI PT VERSI ONI NG
DATA FROM <si ngl e-quoted file path>

Imports datafor database tables. The fileto be imported must be afile exported with the EXPORT SCRIPT statements
listed above with DATA qualifier, or strictly in the same format.

240

HyperS@L System Management

The first form is for importing data for ordinary tables. The { CONTINUE | STOP | CHECK } ON ERROR clause
determines the action when an error occurs due to constraint violation. The CHECK option does not insert the data,
but checks each INSERT statement in the script for type constraints such as string size limit or row constraints such
as NOT NULL. It cannot check for UNIQUE constraints. The STOP option stops the import at the first error. The
CONTINUE option writes the rows that cannot be imported, to afilein the same location as the imported script, with
thefile suffix . r ej ect and the timestamp of the import, then continues the import.

The second form is for importing data for system-versioned tables. This form of import always uses the CONTINUE
option mentioned above. When two replicas of a database exist, an EXPORT is made from one replica and the script
fileis used for an IMPORT into the other replica. The import automatically ignores any history that is aready in the
table and avoid any duplication of data. Errors can arise when the same row has been inserted, updated or deleted in
both databases. In this case, the changes for the row are not applied and are written to the . r ej ect file.

Only auser with the DBA role can execute this statement.
CHECK INDEX
check index statement

<check index statement> ::= PERFORM CHECK { ALL TABLE | TABLE < table nanme
>} INDEX [AND FI X]

Checks the indexes on a single CACHED table, or all the CACHED tables in the database. It returns a list of tables
and indexes with rows counts together with any errors found. The optional AND FI X fixes the damaged indexes on a
tableif at least one index is undamaged. If this option is used, you must perform a CHECKPOINT after completion,
otherwise the fixes will be lost.

This statements takes along time to execute on large tables as all the rows are read again for each index. It also needs
extra Java heap memory over and above normal usage.

Only auser with the DBA role can execute this statement. An example of the output is given below.

TABLE_OR | NDEX_NANE I NFO

TABLE PUBLIC. ZI P rows 4096

SYS | DX_SYS PK _10092_10093 readabl e rows 4096
TABLE PUBLI C. TEST rows 2084352

SYS_I DX_SYS_PK_10096_10097 readabl e rows 2084352

Database Settings

These statements change the database settings.
SET DATABASE COLLATION
set database collation statement

<set database collation statement> ::= SET DATABASE COLLATI ON <col | ati on nane>
[NO PAD | PAD SPACE]

Each database can have its own default collation. Setsthe collation from the set of collations supported by HyperSQL.
Once this command has been issued, the database can be opened in any VM and will retain its collation.

All collations pad the shorter string with spaces when two strings are compared. If NO PAD is specified, comparison
is performed without padding. The default system collation isnamed SQL_ TEXT. To use the default without padding
use SET DATABASE COLLATI ON SQ._TEXT NO PAD.

241

HyperS@L System Management

After you change the collation for a database that contains collated data, you must execute SHUTDOAN COVPACT
or SHUTDOWN SCRI PT in order to recreate the indexes.

Only auser with the DBA role can execute this statement.

Collationsare discussed inthe Schemasand Database Objects chapter. Some examplesof setting the database collation
follow:

-- this collation is an ascii collation with Upper Case Conparison (coverts strings to uppercase
for conparison)
SET DATABASE COLLATI ON SQ._TEXT_UCC

-- this collation is case-insensitive English
SET DATABASE COLLATI ON "English 1"

-- this collation is case-sensitive French
SET DATABASE COLLATI ON "French 2"

SET DATABASE DEFAULT RESULT MEMORY ROWS
set database default result memory rows statement

<set database default result nenmory rows> ::= SET DATABASE DEFAULT RESULT MEMORY
ROA5 <unsigned integer literal >

Sets the maximum number of rows of each result set and internal temporary table that is held in memory. Temporary
tables includes views, schema-based and session-based TEMPORARY tables, transient tables for subqueries, and
| NFORMATI ON_SCHENA tables.

This setting applies to all sessions. Individual sessions can change the value with the SET SESSI ON RESULT
MVEMORY ROWS statement. The default is 0, meaning all result sets are held in memory.

Only auser with the DBA role can execute this statement.

Thisis equivaent to the connection property hsql db. resul t _nmax_nmenory_r ows.
SET DATABASE DEFAULT TABLE TYPE

set database default table type statement

<set dat abase default table type> ::= SET DATABASE DEFAULT TABLE TYPE { CACHED
| MEMORY }

Sets the type of table created when the next CREATE TABLE statement is executed. The default is MEMORY .
Only auser with the DBA role can execute this statement.

Thisis equivaent to the connection property hsql db. def aul t _t abl e_t ype.

SET DATABASE EVENT LOG LEVEL

set database event log level statement

<set database event log level> ::= SET DATABASE EVENT LOG [SQ.] LEVEL { O
| 1] 2] 3}

When the SQL option is not used, this statement sets the amount of information logged in the internal, database-
specific event log. Level 0 means no log. Level 1 means only important (error) events. Level 2 means more events,

242

HyperS@L System Management

including both important and less important (normal) events. Level 3 includes even more details. For readonly and
mem: databases, if the level is set above 0, the log messages are directed to stderr.

The events are logged in afile with the extension . app. | og alongside the main database files.
Thisis equivalent to the connection property hsql db. appl og.

When the SQL option is used, this statement logs the SQL statements as they are executed. Each log line contains the
timestamp and the session number, followed by the SQL statement and JDBC arguments if any.

Levels1, 2 and 3 are supported. Level 1 only logs commitsand rollbacks, while Level 2 and 31og all statements. Level
2 truncates long statements, while level 3 reportsthe full statement and parameter values.

Thelogged lines are stored in afile with the extension . sql . | og aongside the main database files.
Thisis equivalent to the connection property hsql db. sql | og.
Only auser with the DBA role can execute this statement.

From version 2.3.0, the equivalent URL properties, hsql db. app_| og and hsql db. sqgl _| og, can be used not
only for anew database, but also when opening an existing file database to change the event log level.

An extract from an .sql.log file created with log Level 3 is shown below. The numbers after the timestamp (10 and
1) show the session number. The values for prepared statement parameters are shown in parentheses at the end of
the statement.

Example 11.7. SQL Log Example

2012-11-29 10:40:40.250 10 I NSERT | NTO TEST_CLOB VALUES (1,'U wisi enimad mnimveniam quis
nostrud exerci')

2012-11-29 10:40:40.250 1 I NSERT | NTO SYSTEM LOBS. LOB_| DS VALUES(?, 2, ?, ?) (1,49,0,40)
2012-11-29 10:40:40.250 1 COWM T

2012-11-29 10:40:40.265 1 CALL SYSTEM LOBS. ALLOC BLOCKS(?, ?, ?) (1,0,1)

2012-11-29 10:40:40.265 1 COWM T

SET DATABASE GC
set database gc statement
<set database gc statenent> ::= SET DATABASE CC <unsi gned integer literal >

In previous versions an optional property which forced callsto Syst em gc() after the specified number of row
operations. This has no effect from version 2.5.0.

Only auser with the DBA role can execute this statement.
SET DATABASE TEXT TABLE DEFAULTS
set database text table defaults statement

<set dat abase text tabl e defaults statenment> ::= SET DATABASE TEXT TABLE DEFAULTS
<character literal >

An optional property to override default text table settings. The string literal has the same format as the string used for
setting the data source of atext table, but without the file name. Seethe Text Tables chapter.

Only auser with the DBA role can execute this statement.

243

HyperS@L System Management

SET DATABASE TRANSACTION CONTROL
set database transaction control statement

<set dat abase transacti on control statenment> ::= SET DATABASE TRANSACTI ON CONTROL
{ LOCKS | MVLOCKS | MWCC }

Set the concurrency control system for the database. It can be issued only when all sessions have been committed or
rolled back. This command and its modes is discussed in the Sessions and Transactions chapter.

Only auser with the DBA role can execute this statement.

Thisis equivaent to the connection property hsql db. t x.

SET DATABASE TRANSACTION ROLLBACK ON CONFLICT
set database transaction rollback on conflict statement

<set database transaction rollback on conflict statenment> ::= SET DATABASE
TRANSACTI ON ROLLBACK ON CONFLICT { TRUE | FALSE }

When atransaction deadlock or conflict is about to happen, the current transaction is rolled back and an exception is
raised. When this property is set false, the transaction is not rolled back. Only the latest statement that would cause the
conflict is undone and an exception is raised. The property should not be changed unless the application can quickly
perform an alternative statement and complete the transaction. It is provided for compatibility with other database
engines which do not roll back the transaction upon deadlock. This command is also discussed in the Sessions and
Transactions chapter.

Only a user with the DBA role can execute this statement.

Thisis equivalent to the connection property hsqgl db. t x_conflict_rol | back.
SET DATABASE TRANSACTION ROLLBACK ON INTERRUPT

set database transaction rollback on interrupt statement

<set database transaction rollback on interrupt statenment> ::.= SET DATABASE
TRANSACTI ON ROLLBACK ON | NTERRUPT { TRUE | FALSE }

When the user application interrupts athread that is executing aHyperSQL statement, the engine resets the interrupted
flag on the thread. Setting this property to TRUE changes the behaviour and the transaction is rolled back when the
interrupt is detected. This command is also discussed in the Sessions and Transactions chapter.

Only auser with the DBA role can execute this statement.

Thisisequivaent to the connection property hsqgl db. t x_conflict_rol | back.
SET DATABASE DEFAULT ISOLATION LEVEL

set database default isolation level statement

<set database default isolation | evel> ::= SET DATABASE DEFAULT | SOLATI ON LEVEL
{ READ COW TTED | SERI ALI ZABLE }

Sets the transaction isolation level for new sessions. The default is READ COMMITTED. Each session can also set
itsisolation level.

Only auser with the DBA role can execute this statement.

244

HyperS@L System Management

Thisisequivaent to the connection property hsql db. t x_| evel .

SET DATABASE UNIQUE NAME

set database unique name

<set dat abase uni que nanme statenment> ::= SET DATABASE UNl QUE NAME <identifier>

Each HyperSQL catalog (database) has an engine-generated internal name. This name is a 16-character long string,
beginning with HSQL DB and based on the time of creation of the database. The name is used for the log events that
are sent to external logging frameworks. The new name must be exactly 16 characters long with no spaces.

Only auser with the DBA role can execute this statement.

SET TABLE TYPE

set table type

<set table type statenment> ::= SET TABLE <table nane> TYPE { MEMORY | CACHED }
Changes the storage type of an existing table between CACHED and MEMORY types.

Only auser with the DBA role can execute this statement.

SQL Conformance Settings

These statements modify thelevel of conformanceto the SQL Standard in different areas. The settingsthat specify SQL
SYNTAX arefor compatibility with other database engines and are FAL SE by default. For all the rest of the settings,
TRUE means better conformance to the Standard (unless the Standard defines the behaviour as implementation
dependent). The default value of afew of these settingsis FALSE, due to widespread non-conforming statements that
are aready in usein user applications or statements generated by object relational tools. So long asit ispractical, it is
best to set the non-conforming defaultsto TRUE in order to improve the quality of the database application.

SET DATABASE SQL RESTRICT EXEC
set database sq|l restrict exec statement

<set database sqgl restrict exec statenent> ::= SET DATABASE SQ. RESTRI CT EXEC
{ TRUE | FALSE }

Restricts or allows execution of SQL commands consisting of multiple statementsin asingle string. The property also
disalowsor alowstheuseof j ava. sql . St at enent . execut eQuer y() for any DDL or DML statement.

This property is FALSE by default. SQL Standard and JDBC require restriction to a single statement. It is advisable
to restrict execution.

Only auser with the DBA role can execute this statement.

Thisis equivalent to the connection property sql . restri ct _exec.

SET DATABASE SQL SIZE

set database sl size statement

<set database sql size statement> ::= SET DATABASE SQ. Sl ZE { TRUE | FALSE }

Enable or disable enforcement of column sizes for CHAR and VARCHAR columns. The default is TRUE, meaning
table definition must contain VARCHAR(n) instead of VARCHAR.

245

HyperS@L System Management

SQL Standard requires enforcement.

Only a user with the DBA role can execute this statement.

Thisis equivaent to the connection property sql . enf orce_si ze.

SET DATABASE SQL NAMES

set database sgl names statement

<set database sqgl names statenent> ::= SET DATABASE SQL NAMES { TRUE | FALSE }

Enable or disable full enforcement of the rule that prevents SQL keywords being used for database object names such
as columns and tables. The default is FALSE, meaning disabled.

SQL Standard requires enforcement. It is better to enable this check, in order to improve the quality and correctness
of SQL statements.

Only auser with the DBA role can execute this statement.

Thisis equivalent to the connection property sql . enf or ce_nanes.
SET DATABASE SQL REGULAR NAMES

set database sgl regular names statement

<set database sql regular nanes statenent> ::= SET DATABASE SQ. REGULAR NAMES
{ TRUE | FALSE }

Enable or disable use of the underscore character at the beginning, or the dollar character anywhere in database object
names such as columns and tables. The default is TRUE, meaning disabled.

SQL Standard does not alow the underscore character at the start of names, and does not alow the dollar character
anywhere in a name. This setting can be changed for compatibility with existing database or for porting databases
which include names that do not conform to the Standard.

Only auser with the DBA role can execute this statement.

Thisis equivaent to the connection property sql . r egul ar _nanes.
SET DATABASE SQL REFERENCES

set database sql references statement

<set dat abase sql references statenent> ::= SET DATABASE SQL REFERENCES { TRUE
| FALSE }

This command can enable or disable full enforcement of the rule that prevents ambiguous column references in SQL
statements (usually SELECT statements). A column reference is ambiguous when it is not qualified by a table name
or table alias and can refer to more than one column in a JOIN list.

The property is FALSE by defaullt.

SQL Standard requires enforcement. It is better to enable this check, in order to improve the quality and correctness
of WL statements. When false, the first matching table is used to resolve the column reference.

Only auser with the DBA role can execute this statement.

246

HyperS@L System Management

Thisis equivaent to the connection property sql . enforce_refs.

SET DATABASE SQL TYPES

set database sql types statement

<set database sql types statenment> ::= SET DATABASE SQL TYPES { TRUE | FALSE }

This command can enable or disablefull enforcement of the rulesthat preventsillegal type conversionsand parameters
or nullswithout typein SQL statements (usually SELECT statements). For example, an INTEGER column or aDATE
column cannot be compared to a character string or searched with a LIKE expression when the property is TRUE.

The property is FALSE by defaullt.

SQL Standard requires enforcement. It is better to enable this check, in order to improve the quality and correctness
of SQL statements.

Only auser with the DBA role can execute this statement.

Thisis equivaent to the connection property sql . enf orce_t ype.
SET DATABASE SQL TDC DELETE

set database sl tdc delete statement

<set database sql tdc delete statenent> ::= SET DATABASE SQL TDC DELETE { TRUE
| FALSE }

This command can enable or disable full enforcement of the SQL Standard rules that prevents triggered data change
exceptions caused by ON DELETE CASCADE clauses of foreign key constraint.

When there are multiple constraints, arow may be updated by one constraint and deleted by another constraint in the
same operation. Thisis not allowed by default. Changing this to false allows such violations of the Standard to pass
without an exception.

The property is TRUE by default.

SQL Standard requires enforcement; this property shouldn't be changed unless an application written for a non-
conforming RDBMS needsit.

Only auser with the DBA role can execute this statement.

Thisis equivalent to the connection property sql . enforce_tdc_del ete.
SET DATABASE SQL TDC UPDATE

set database sl tdc update statement

<set database sql tdc update statenment> ::= SET DATABASE SQL TDC UPDATE { TRUE
| FALSE }

This command can enable or disable full enforcement of the SQL Standard rules that prevents triggered data change
exceptions caused by multiple ON UPDATE or ON DELETE SET clauses of foreign key constraint. When there are
multiple constraints, afield in arow may be updated by two constraints to different valuesin the same operation. This
isnot allowed by default. Changing thisto FAL SE allows such violations of the Standard to pass without an exception.

The property is TRUE by default.

247

HyperS@L System Management

SQL Standard requires enforcement; this property shouldn't be changed unless an application written for a non-
conforming RDBMS needsiit.

Only auser with the DBA role can execute this statement.

Thisis equivaent to the connection property sql . enf orce_t dc_updat e.
SET DATABASE SQL TRANSLATE TTI TYPES

set database sl trandlate tti types statement

<set database sql translate tti types statement> ::= SET DATABASE SQ. TRANSLATE
TTI TYPES { TRUE | FALSE }

The JDBC Specification up to version 4.1 does not support some SQL Standard built-in types. Therefore, these types
must be trandated to a supported type when accessed through JDBC ResultSet and PreparedStatement methods.

If the property istrue, the TIME / TIMESTAMP WITH TIME ZONE types and INTERVAL types are represented in
JDBC methods of Resul t Set Met aDat a and Dat abaseMet aDat a as JDBC datetime types without time zone
and the VARCHAR type respectively. The original type names are preserved.

The property is TRUE by default. If set to FALSE, the type codes for WITH TIME ZONE types will be SQL type
codes as opposed to JIDBC type codes.

Only auser with the DBA role can execute this statement.

Thisis equivalent to the connection property j dbc. transl ate_tti _types.
SET DATABASE SQL CHARACTER LITERAL

set database sgl character literal

<set database sqgl character literal statenment> ::= SET DATABASE SQ. CHARACTER
LI TERAL { TRUE | FALSE }

When the property is TRUE, the data type of character literal strings is CHARACTER. When the property is FALSE
the data type is VARCHAR.

Setting this property FALSE resultsin strings not padded with spacesin CASE WHEN expressions that have multiple
literal alternatives.

SQL Standard requires the CHARACTER type.

The property is TRUE by default.

Only auser with the DBA role can execute this statement.

Thisis equivaent to the connection property sql . char _literal.
SET DATABASE SQL CONCAT NULLS

set database sgl concat nulls statement

<set database sql concat nulls statenent> ::= SET DATABASE SQ. CONCAT NULLS
{ TRUE | FALSE }

When the property is TRUE, concatenation of a null value with a not-null value results in a null value. When the
property is FALSE this type of concatenation result in the not-null value.

248

HyperS@L System Management

Setting this property FALSE results in concatenation behaviour similar to Oracle or MS SQL Server.
SQL Standard requiresa NULL result.

The property is TRUE by default.

Only auser with the DBA role can execute this statement.

Thisis equivaent to the connection property sql . concat _nul | s.

SET DATABASE SQL UNIQUE NULLS

set database sgl unique nulls statement

<set database sql unique nulls statenent> ::= SET DATABASE SQ. UN QUE NULLS
{ TRUE | FALSE }

When the property is TRUE, with multi-column UNIQUE constraints, it is possible to insert multiple rows for which
one or more of the values for the constraint columnsis NULL. When the property is FALSE, if there is any not-null
value in the columns, then the set of values is compared to the existing rows and if there is a match, an exception is
thrown. The setting FAL SE, makes the behaviour more restrictive. For example, inserting (1, null) twice is possible
by default, but not possible when the property is FALSE.

Setting this property FALSE resultsin UNIQUE constraint behaviour similar to Oracle.
SQL Standard requires the default (TRUE) behaviour.

The property is TRUE by default.

Only auser with the DBA role can execute this statement.

Thisis equivaent to the connection property sql . uni que_nul | s.

SET DATABASE SQL CONVERT TRUNCATE

set database sgl convert truncate

<set database sql convert truncate statement> ::= SET DATABASE SQ. CONVERT
TRUNCATE { TRUE | FALSE }

When the property is TRUE, conversion from a floating-point value (a DOUBLE value) to an integral type always
truncates the fractional part. When the property is FALSE, rounding takes place instead of truncation. For example,
assigning the value 123456E-2 to an integer column will result in 1234 by default, but 1235 when the property is
FALSE.

Standard SQL considers this behaviour implementation dependent.
The property is TRUE by default.

Only auser with the DBA role can execute this statement.

Thisis equivalent to the connection property sql . convert _trunc.
SET DATABASE SQL AVG SCALE

set database sgl avg scale

<set database sql avg scal e> ::= SET DATABASE SQ. AVG SCALE <nuneric val ue>

249

HyperS@L System Management

By default, the result of division and the AVG and MEDIAN aggregate functions has the same type as the aggregated
type of the values. Thisincludes the scale. The scale specified with this property isused if it islarger than the scale of
the operation. For example, the average of 5 and 10 is 7 by default, but 7.50 if the scale is specified as 2. The result
of 7/3is 2 by default but 2.33 if the scale is specified as 2.

Standard SQL considersthis behaviour implementation dependent. Some databases use adefault scalelarger than zero.
The property is0 by default.

Only auser with the DBA role can execute this statement.

Thisis equivalent to the connection property sql . avg_scal e.

SET DATABASE SQL DOUBLE NAN

set database sgl double nan

<set database sqgl double nan> ::= SET DATABASE SQ. DOUBLE NAN { TRUE | FALSE }

When the property is TRUE, division of a floating-point value (a DOUBLE value) by zero raises an exception. When
the property isFALSE, aJavaDoubl e. NaN, PCSI Tl VE_| NFI NI TY or NEGATI VE_| NFI NI TY valueisreturned.

Standard SQL requires an exception to be raised.

The property is TRUE by default.

Only auser with the DBA role can execute this statement.

Thisis equivalent to the connection property sql . doubl e_nan.

SET DATABASE SQL NULLSFIRST

set database sgl nullsfirst

<set database sqgl nulls first> ::= SET DATABASE SQL NULLS FIRST { TRUE | FALSE }

When the property is TRUE, nulls appear before valuesin result setswith ORDER BY . When set FAL SE, nulls appear
after the values. Some databases, including PostgreSQL, Oracle, and MS SQL Server, return nulls after the values.

The property is TRUE by default.

Only auser with the DBA role can execute this statement.

Thisisequivaent to the connection property sql . nul | s_first.

SET DATABASE SQL NULLSORDER

set database sgl nulls order

<set database sqgl nulls order> ::= SET DATABASE SQL NULLS ORDER { TRUE | FALSE }
When NULLS FIRST or NULLS LAST isused explicitly in the ORDER BY clause, this property isignored.

When the property is TRUE, nulls appear according to the value of NULL FIRST property as described above.

When set FALSE, nulls appear according to the value of NULLS FIRST property when DESC is not used in the
ORDER BY clause. But if DESC is used, the position of nullsis reversed. Some databases, including MySQL and
Oracle, return nulls in this manner when DESC is used in ORDER BY.

250

HyperS@L System Management

The property is TRUE by default.

Only auser with the DBA role can execute this statement.

Thisisequivaent to the connection property sql . nul | s_or der.

SET DATABASE SQL IGNORECASE

set database sl ignorecase

<set database sql ignorecase> ::= SET DATABASE SQ. | GNORECASE { TRUE | FALSE }

This property is FALSE by default and should only be used in special circumstances where compatibility with a
different database is required.

When the property is TRUE, all declarations of VARCHAR columnsin tables or other database objects are converted to
VARCHAR | GNORECASE. This has aglobal effect on the database, unlike the SET | GNORECASE statement which
applies only to the current session.

The property is FALSE by defaullt.

Only auser with the DBA role can execute this statement.

Thisisequivaent to the connection property sql . i gnor e_case.

SET DATABASE SQL LIVE OBJECT

set database sql live object

<set database sqgl |ive object> ::= SET DATABASE SQ. LI VE OBJECT { TRUE | FALSE }
This property is FALSE by default and can only be used in mem: databases.

When the property is FALSE, all java objects stored in a column of type OTHER are serialized. When the property
is FALSE, objects are not serialized at all.

Thisisequivaent to the connection property sql . | i ve_obj ect .
SET DATABASE SQL SYSINDEX NAMES
set database sgl sysindex names

<set database sqgl sys table nanes statenent> ::= SET DATABASE SQL SYS | NDEX
NAMES { TRUE | FALSE }

This property, when set TRUE, changes the naming method for system generated indexes that are used to support
UNIQUE and FOREIGN KEY constraints. By default, the names of those indexes are generated as stringswith SYS
prefixes. When the property is set TRUE, the names will be the same as the constraint names.

Changing the property does not affect the names of indexes for the constraints that have already been defined. After a
restart of the database all system-generated indexes are named according to the setting for this property.

The property is FALSE by defaullt.
Only auser with the DBA role can execute this statement.
Thisis equivalent to the connection property sql . sys_i ndex_nanes.

SET DATABASE SQL SYNTAX DB2

251

HyperS@L System Management

set database sgl syntax DB2

<set database sql syntax DB2 statenent> ::= SET DATABASE SQL SYNTAX DB2 { TRUE
| FALSE }

This property, when set TRUE, enables support for some elements of DB2 syntax. Single-row SELECT statements
(SELECT <expression |ist> without the FROM clause) are supported and treated as the SQL Standard
equivalent, VALUES <expression |ist>. The DUAL table is supported, as well as the ROWNUM pseudo
column. BINARY type definitions such asVARCHAR(L) FOR BIT DATA are supported. Empty DEFAULT clauses
in column definitions are supported.

The property is FALSE by defauilt.

Only auser with the DBA role can execute this statement.

Thisis equivalent to the connection property sql . synt ax_db2.
SET DATABASE SQL SYNTAX MSS

set database sgl syntax MSS

<set database sql syntax MSS statenent> ::= SET DATABASE SQL SYNTAX MSS { TRUE
| FALSE }

This property, when set TRUE, enables support for some elements of SQLServer syntax. Single-row SELECT
statements (SELECT <expression |i st > without the FROM clause) are supported and treated as the SQL
Standard equivalent, VALUES <expr essi on | i st >. The parameters of CONVERT() function are switched in
this mode.

The property is FALSE by defauilt.

Only auser with the DBA role can execute this statement.

Thisis equivalent to the connection property sql . synt ax_nss.
SET DATABASE SQL SYNTAX MYS

set database sgl syntax MYS

<set database sql syntax MYS statenent> ::= SET DATABASE SQL SYNTAX MyYS { TRUE
| FALSE }

Thisproperty, when set TRUE, enables support for some elements of MySQL syntax. The TEXT datatypeistranslated
to LONGVARCHAR.

In CREATE TABLE statements, [NOT NULL | NULL] can be used immediately after the column type name and
beforethe DEFAULT clause. AUTO_INCREMENT istrans atedtothe GENERATED BY DEFAULT ASIDENTITY
clause.

Single-row SELECT statements (SELECT <expr essi on |i st > without the FROM clause) are supported and
treated as the SQL Standard equivalent, VALUES <expression |i st >.

The property is FALSE by default.
Only auser with the DBA role can execute this statement.

Thisis equivalent to the connection property sql . synt ax_nys.

252

HyperS@L System Management

SET DATABASE SQL SYNTAX ORA
set database sgl syntax ORA

<set database sql syntax ORA statenment> ::= SET DATABASE SQL SYNTAX ORA { TRUE
| FALSE }

This property, when set TRUE, enables support for some elements of Oracle syntax. The DUAL table is supported,
together with ROWNUM, NEXTVAL and CURRVAL syntax and semantics.

The non-standard types are translated to supported standard types. BINARY_DOUBLE and BINARY_FLOAT are
translated to DOUBLE. LONG RAW and RAW are trandlated to VARBINARY with long or medium length limits.
LONG and VARCHAR? are trandated to VARCHAR with long or medium length limits. NUMBER is trandated to
DECIMAL. Some extratype conversions and no-arg functions are also allowed in this mode.

The property is FALSE by default.

Only auser with the DBA role can execute this statement.

Thisis equivaent to the connection property sql . synt ax_or a.
SET DATABASE SQL SYNTAX PGS

set database sgl syntax PGS

<set database sql syntax PGS statenent> ::= SET DATABASE SQL SYNTAX PGS { TRUE
| FALSE }

This property, when set TRUE, enables support for some elements of PosgtreSQL syntax. The TEXT data type is
translated to LONGVARCHAR, while the SERIAL data typesis translated to BIGINT together with GENERATED
BY DEFAULT ASIDENTITY.

Single-row SELECT statements (SELECT <expr essi on |i st > without the FROM clause) are supported and
treated as the SQL Standard equivalent, VALUES <expression |ist>.

The functions NEXTVAL(<sequence name string>), CURRVAL(<sequence nane string>) and
LASTVAL() are supported in this compatibility mode.

The property is FALSE by defaullt.

Only auser with the DBA role can execute this statement.

Thisis equivalent to the connection property sql . synt ax_pgs.
SET DATABASE REFERENTIAL INTEGRITY

set database referential integrity statement

<set database referential integrity statement> ::= SET DATABASE REFERENTI AL
I NTEGRITY { TRUE | FALSE }

This command enables or disables the enforcement of referential integrity constraints (foreign key constraints), check
constraints apart from NOT NULL and execution of triggers. By default, all constraints are checked.

The only legitimate use of this statement is before importing large amounts of external data into tables that have
existing FOREIGN KEY constraints. After import, the statement must be used again to enable constraint enforcement.

253

HyperS@L System Management

If you are not sure the data conforms to the constraints, run queries to verify all rows conform to the FOREIGN KEY
constraints and take appropriate actions for the rows that do not conform.

A query example to return the rows in aforeign key table that have no parent is given below:

Example 11.8. Finding foreign key rows with no parents after a bulk import

SELECT * FROM foreign_key table LEFT OQUTER JO N primary_key_tabl e
ON foreign_key table.fk _col = primary_key_table.pk_col WHERE primary_key tabl e. pk_col IS NULL

Only auser with the DBA role can execute this statement.

Cache, Persistence and Files Settings

These statements control the memory and other settings for database persistence.
SET FILESBACKUP INCREMENT
set files backup increment statement

<set files backup increnent statenment> ::= SET FILES BACKUP | NCREMENT { TRUE
| FALSE }

Very old versions of HyperSQL performed a backup of the . dat a file before its contents were modified and the
whole . dat a file was saved in a compressed form when a CHECKPOINT or SHUTDOWN was performed. This
takes a long time when the size of the database exceeds 100 MB or so. This feature was still supported until version
2.5.0 for backward compatibility.

The alternative is backup in increments, just before some part of the . dat a fileis modified. In this mode, no backup
is performed at CHECKPOINT or SHUTDOWN. This mode has been supported for many years. From version 2.5.1
thisisthe only supported mode.

The default mode is now TRUE. This command has no effect.

Only auser with the DBA role can execute this statement.

Thisis equivaent to the connection property hsql db. i nc_backup.
SET FILESCACHE ROWS

set files cache rows statement

<set files cache rows statenent> ::= SET FILES CACHE ROWS <unsigned integer
literal >

Sets the maximum number of rows (of CACHED tables) held in the memory cache. The default is 50000 rows.
Only auser with the DBA role can execute this statement.

Thisis equivaent to the connection property hsql db. cache_r ows.

SET FILESCACHE SIZE

set files cache size statement

<set files cache size statenment> ::= SET FILES CACHE SIZE <unsigned integer
literal >

254

HyperS@L System Management

Sets maximum amount of data (of CACHED tables) in kilobytes held in the memory cache. The default is 10000
kilobytes. Note the amount of memory used is larger than this amount, which does not account for Java object size
overheads.

Only auser with the DBA role can execute this statement.

Thisis equivaent to the connection property hsql db. cache_si ze.

SET FILESDEFRAG

set files defrag statement

<set files defrag statenent> ::= SET FILES DEFRAG <unsigned integer literal >

Sets the threshold for performing a DEFRAG during a checkpoint. The <unsi gned i nteger |iteral >isthe
percentage of abandoned spaceinthe* . dat a file. WhenaCHECKPOINT is performed either asaresult of the. | og
file reaching the limit set by SET FI LES LOG S| ZE m or by the user issuing a CHECKPOINT command, the
amount of space abandoned since the database was opened is checked and if it islarger than the specified percentage, a
CHECKPOINT DEFRAG isperformed instead of a CHECKPOINT. Asthe DEFRAG operation uses alot of memory
and takes a long time with large databases, setting the threshold well above zero is suitable for databases that are
around than 500 MB or more.

The default is 0, which indicates no DEFRAG. Useful values are between 30 to 60.

Only auser with the DBA role can execute this statement.

Thisis equivalent to the connection property hsql db. defrag limt.

SET FILESLOG

set files log statement

<set files log statement> ::= SET FILES LOG { TRUE | FALSE }

Setslogging of database operations on or off. Turning logging off isfor special usage, such astemporary cache usage.
The default is TRUE.

Only auser with the DBA role can execute this statement.

Thisis equivaent to the connection property hsql db. | og_dat a.

SET FILESLOG SIZE

set files log size statement

<set files log size statenment> ::= SET FI LES LOG S| ZE <unsi gned integer literal >

Sets the maximum size in MB of the *. | og file to the specified value. The default maximum size is 50 MB. If the
value is zero, no limit is used for the size of the file. When the size of the file reaches this value, a CHECKPOINT
isperformed and thethe*. | og fileiscleared to size 0.

Only auser with the DBA role can execute this statement.
Thisis equivaent to the connection property hsqgl db. | og_si ze.
SET FILESNIO

set filesnio

255

HyperS@L System Management

<set files nio statement> ::= SET FILES NNO { TRUE | FALSE }

Sets the access method of the . dat a file. The default is TRUE and uses the Java nio classes to access the file via
memory-mapped buffers.

Only auser with the DBA role can execute this statement.

Thisis equivalent to the connection property hsqgl db. ni o_data file.

SET FILESNIO SIZE

set filesnio size

<set files nio size statenent> ::= SET FILES NI O SI ZE <unsi gnhed i nteger literal >

Sets The maximum size of .data file in megabytes that can use the nio access method. When the file gets larger than
this limit, non-nio access methods are used. Values 64, 128, 256, 512, 1024 and larger multiples of 512 can be used.
The default is 256MB.

Only auser with the DBA role can execute this statement.

Thisis equivalent to the connection property hsql db. ni o_max_si ze.
SET FILESWRITE DELAY

set files write delay statement

<set files wite delay statenent> ::= SET FILES WRI TE DELAY {{ TRUE | FALSE }
| <seconds value> | <m|liseconds val ue> MLLI S}

Set the WRITE DELAY property of the database. The WRITE DELAY controls the frequency of file sync for the
log file. When WRITE_DELAY is set to FALSE or 0, the sync takes place immediately at each COMMIT. WRITE
DELAY TRUE performs the sync once every 0.5 seconds (which is the default). A numeric value can be specified
instead.

The purpose of thiscommand isto control the amount of datalossin case of atotal system crash. A delay of 1 second
means at most the data written to disk during the last second before the crash islost. All data written prior to this has
been synced and should be recoverable.

A write delay of 0impacts performance in high load situations, as the engine hasto wait for the file system to catch up.
To avoid this, you can set write delay down to 10 milliseconds.

Each timethe SET FILESWRITE DELAY statement is executed with any value, a sync isimmediately performed.
Only auser with the DBA role can execute this statement.

Thisis equivalent to the connection propertieshsql db. wri t e_del ay andhsgl db. wite delay mllis.
SET FILESSCALE

set files scale

<set files scale statenent> ::= SET FILES SCALE <scal e val ue>

Changes the scale factor for the . dat a file. The default scale is 32 and allows 64GB of data storage capacity. The
scale can be increased in order to increase the maximum data storage capacity. The scale values 16, 32, 64, 128, 256,
512, 1024 are allowed. Scale value 1024 allows a maximum capacity of 2 TB.

256

HyperS@L System Management

This command should be used before data is inserted into CACHED TABLES. It can dso be used when there is
some datain CACHED tables but then it has no effect until a SHUTDOWN COMPACT or SHUTDOWN SCRIPT is
performed. Thisis equivalent to the connection property hsql db. cache_fil e_scal e.

The scale factor indicates the size of the unit of storage of datain bytes. For example, with a scale factor of 128, arow
containing a small amount of datawill use 128 bytes. Larger rows may use multiple units of 128 bytes.

When the data file aready exists, you must perform SHUTDOWN COMPACT or SHUTDOWN SCRIPT after
changing the scale. Otherwise the change will be forgotten.

Only auser with the DBA role can execute this statement.

Thisis equivalent to the connection property hsqgl db. cache_fil e_scal e.

SET FILESLOB SCALE

set fileslob scale

<set files lob scale statenment> ::= SET FILES LOB SCALE <scal e val ue>

Changes the scale factor for the . | obs file. The scale is interpreted in kilobytes. The default scale is 32 and alows
64TB of lob data storage capacity. The scale can be reduced in order to improve storage efficiency. If thelobsarealot
smaller than 32 kilobytes, reducing the scale will reduce wasted space. The scalevalues, 2, 4, 8, 16, 32 are allowed.
For example, if the average size of lobsis 4 kilobytes, the default scale of 32 will result in 28K B wasted space for each
lob. Reducing the lob scale to 2 will result in average 1KB wasted space for each |ob.

This command can be used only when there is no lob in the database.

Only auser with the DBA role can execute this statement.

Thisisequivaent to the connection property hsqgl db. 1 ob_fil e_scal e.

SET FILESLOB COMPRESSED

set files lob compressed

<set files | ob conpressed statenent> ::= SET FI LES LOB COWRESSED { TRUE | FALSE }

By default, lobs are not compressed for storage. When this setting is TRUE, al BLOB and CLOB values stored in the
database are compressed. Compression reduces the storage size but increases the access time.

This command can be used only when there is no lob in the database.

Only a user with the DBA role can execute this statement.

Thisis equivaent to the connection property hsqgl db. | ob_conpr essed.
SET FILES SCRIPT FORMAT

set files script format

<set files script format statement> ::= SET FILES SCRIPT FORVAT { TEXT |
COVPRESSED }

Changes the compression setting for database scripts. The default istext. Using COMPRESSED resultsin the storage
of the. scri ptfilein gzip compressed form. Using this command causes a CHECKPOINT.

Only auser with the DBA role can execute this statement.

257

HyperS@L System Management

SET FILES SPACE
set files space
<set files space statenent> ::= SET FILES SPACE TRUE

Enables use of table spaces for CACHED tables. Each table is allocated space in blocks. The size of each block in
megabytesisequal to the datafile scale divided by 16. The default datafile scaleis 32 so the default size of each block
is2 MB. See the SET TABLE NEW SPACE statement below.

Only auser with the DBA role can execute this statement.

SET TABLE NEW SPACE

set table new space

<set table new space statement> ::= SET TABLE <t abl e name> NEW SPACE

Sets the named table to use its own space blocks within the . dat a file. Use of table spaces should be enabled with
the SET FILES SPACE statement above, before this statement is executed.

Only auser with the DBA role can execute this statement.

Authentication Settings

Two settings are available for authentication control.

When the default password authentication is used, the passwords can be checked for complexity according to
administrative rules

SET DATABASE PASSWORD CHECK FUNCTION
set database password check function

<set dat abase password check function statenment> ::= SET DATABASE PASSWORD CHECK
FUNCTI ON { <routine body> | NONE }

The routine body is the body of afunction that has a VARCHAR parameter and returns a BOOLEAN. This function
checks the PASSWORD submitted as parameter and returns TRUE if it conforms to complexity checks, or FALSE,
if it does not.

The<routi ne body> can be an SQL block or an externa Java function reference. Thisis covered in the SQL-
Invoked Routines chapter

To disable this mechanism, the token NONE can be specified instead of the<r out i ne body>.
Only auser with the DBA role can execute this statement.

In the examples below, an SQL function and a Java function are used.

SET DATABASE PASSWORD CHECK FUNCTI ON
BEG N ATOM C
I F CHAR _LENGTH(PASSWORD) > 6 THEN
RETURN TRUE;
ELSE
RETURN FALSE;
END | F;

258

HyperS@L System Management

END

SET DATABASE PASSWORD CHECK FUNCTI ON EXTERNAL NAME
' CLASSPATH: or g. anor g. access. AccessC ass. accessMet hod'

/1 the Java nethod is defined like this
public static bool ean accessMet hod(String param {
return param!= null && paramlength > 6;

}

Itis possibleto replace the default password authentication completely with afunction that uses external authentication
servers, such as LDAP. Thisfunction is called each time a user connects to the database.

SET DATABASE AUTHENTICATION FUNCTION
set database authentication function

<set dat abase aut hentication function statenment> ::= SET DATABASE AUTHENTI CATI ON
FUNCTI ON { <external body reference> | NONE }

Theroutine body isan external Javafunction reference. This function hasthree String parameters. Thefirst parameter
is the unique name of the database, the second parameter the user name, and the third parameter the password.

External authentication can be used in two different patterns. In the first pattern, user names must be stored in the
database. In the second pattern, user names shouldn't be stored in the database and any names that are stored in the
database are ignored.

In both patterns, the username and password are checked by the authentication function. If the function throws a
runtime exception then authentication fails.

In the first pattern, the function always returns null if authentication is successful.

In the second pattern, the function returns a list of role names that have been granted to the user. These roles must
match the ROLE objects that have been defined in the database.

The Javafunction should return an instance of org.hsgldb.jdbc.JDBCATrrayBasic constructed with a String[] argument
that contains the role names.

Only auser with the DBA role can execute this statement.

SET DATABASE AUTHENTI CATI ON FUNCTI ON EXTERNAL NAME
' CLASSPATH: or g. anor g. access. AccessCl ass. accessExer nal Met hod'

/1 the Java nethod is defined like this
public static java.sqgl.Array accessExternal Method(String database, String user, String password)
{
i f (external Check(database, user, password) {
return null;

}

t hrow new Runti meException("failed to authenticate");

259

HyperS@L

Chapter 12. Compatibility With Other DBMS

Fred Toussi, The HSQL Development Group
$Revision: 3096 $

Copyright 2010-2020 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.

2020-06-29

Compatibility Overview

HyperSQL is used more than any other database engine for application testing and development targeted at other
databases. Over the years, thisusage resulted in devel opers finding and reporting many obscure bugs and opportunities
for enhancements in HyperSQL. The bugs were all fixed shortly after the reports and enhancements were added in
later versions.

HyperSQL 2.x has been written to the SQL Standard and avoids the traps caused by superficial imitation of the
Standard by some other RDBMS. The SQL Standard has existed since 1989 and has been expanded over the yearsin
several revisions. HyperSQL follows SQL:2016, which still stays almost fully compatible with SQL-92. The X-Open
specification has also defined a number of SQL functions which are implemented by most RDBMS.

HyperSQL hasmany property settingsthat relax conformanceto the Standard in order to allow compatibility with other
RDBMS, without breaking the core integrity of the database. These properties are modified with SET DATABASE
SQL statements described in the SQL Conformance Settings section of Management chapter.

HyperSQL isvery flexible and provides some other properties which define a preference among various valid choices.
For example, the ability to set the transaction model of the database, or the ability to define the scale of the data type
of the result of integer division or average calculation (SET DATABASE SQ. AVG SCALE).

Each major RDBMS supports additional functions that are not covered by the Standard. Some RDBMS use non-
standard syntax for some operations. Although most popular RDBM S products have introduced better compatibility
with the Standard in their recent versions, there are still some portability issues. HyperSQL overcomes the potability
issues using these strategies

» Anextensive set of functions cover the SQL Standard, X-Open, and most of the useful functionsthat other RDBMS
support.

 Database properties, which can be specified on the URL or as SQL statements, relax conformance to the Standard
in order to allow non-standard comparisons and assignments allowed by other RDBMS.

* Specific SQL syntax compatibility modesallow syntax and type namesthat are supported by some popular RDBMS.

» User-defined types and functions, including aggregate functions, alow any type or function that is supported by
some RDBMS to be defined and used.

Support for compatibility with other RDBMS has been extended with each version of HyperSQL. This chapter lists
some of the non-standard features of database servers, their SQL Standard equivalents or the support provided by
HyperSQL for those features.

PostgreSQL Compatibility

PostgreSQL is fairly compatible with the Standard, but uses some non-standard features.

260

HyperS@L Compatibility With Other DBMS

e UseSET DATABASE SQL SYNTAX PGS TRUE or theequivalent URL property sql . synt ax_pgs=t rue to
enabl e the PostgreSQL 's non-standard features. Referencesto SERIAL, BIGSERIAL, TEXT and UUID datatypes,
aswell as sequence functions, are translated into HyperSQL equivalents.

e Use SET DATABASE TRANSACTI ON CONTROL MVCCIif your application is multi-user.
 PostgreSQL functions are generally supported.

* For identity columns, PostgreSQL uses a non-standard linkage with an external identity sequence. In most cases,
this can be converted to GENERATED BY DEFAULT AS | DENTI TY. In those cases where the identity sequence
needs to be shared by multiple tables, you can use a new HyperSQL feature, GENERATED BY DEFAULT AS
SEQUENCE <sequence nane>, which isthe equivalent of the PostgreSQL implementation.

e In CREATE TABLE statements, the SERIAL and BIGSERIAL types are trandated into INTEGER or BIGINT,
with GENERATED BY DEFAULT AS | DENTI TY. Usage of DEFAULT NEXTVAL(<sequence nane>)
is supported so long as the <sequence nane> refers to an existing sequence. This usage is trandated into
CENERATED BY DEFAULT AS SEQUENCE <sequence nane>.

e InSELECT and other statements, the NEXTVAL(<sequence nane>) and LASTVAL() functionsare supported
and trandlated into HyperSQL'sNEXT VALUE FOR <sequence name> and | DENTI TY() expressions.

 PostgreSQL uses a non-standard expression, SELECT ' A Test String' toreturn asingle row table. The
standard form isVALUES(' A Test String').In PGS syntax mode, this type of SELECT is supported.

» HyperSQL supports SQL Standard ARRAY types. PostgreSQL also supports this, but not entirely according to the
Standard.

» SQL routines are portable, but some syntax elements are different and require changes.

e Youmay needtouse SET DATABASE SQL TDC { DELETE | UPDATE } FALSE statements, as PostgreSQL
does not enforce the subtle rules of the Standard for foreign key cascading deletes and updates. PostgreSQL allows
cascading operations to update afield value multiple times with different values, the Standard disallows this.

MySQL Compatibility

HyperSQL version 2.5 is highly compatible with MySQL and supports most of its non-standard syntax. The latest
versions of MySQL have introduced better Standard compatibility but some of these features have to be turned on via
properties. Y ou should therefore check the current Standard compatibility settings of your MySQL database and use
the available HyperSQL properties to achieve closer results. If you avoid the few anti-Standard features of MySQL,
you can port your databases to HyperSQL and make it easier to port to other database engines.

Using HyperSQL during development and testing of MySQL apps helps to avoid data integrity issues that MySQL
may ignore.

HyperSQL does not have the following non-standard limitations of MySQL.

» With HyperSQL, an UPDATE statement can update UNIQUE and PRIMARY KEY columns of a table without
causing an exception dueto temporary violation of constraints. These constraints are checked at the end of execution,
therefore there is no need for an ORDER BY clause in an UPDATE statement.

» MySQL foreign key constraints are not enforced by the default MylSAM engine. Be aware of the possibility of data
being rgjected by HyperSQL due to these constraints.

» With HyperSQL INSERT or UPDATE statements either succeed or fail dueto constraint violation. MySQL hasthe
non-standard IGNORE override to ignore violations and alter the data, which is not accepted by HyperSQL.

261

HyperS@L Compatibility With Other DBMS

Unlike MySQL, HyperSQL allows you to modify atable with an INSERT, UPDATE or DELETE statement which
selects from the same table in a subquery.

Follow the guidelines below for converting MySQL databases and applications.

Use SET DATABASE SQL SYNTAX MYS TRUE or the equivalent URL property sqgl . synt ax_nys=true
to enable support for AUTO_INCREMENT and TEXT data types and several other types. These type definitions
are trandated into HyperSQL equivalents.

Use MVCC with SET DATABASE TRANSACTI ON CONTRCL MVCCif your application is multi-user.

Avoid storing invalid values, for example invalid dates such as '0000-00-00" or '2001-00-00" which are rejected by
HyperSQL.

Avoid the MySQL feature that trims spaces at the end of CHAR values.

In MySQL, a database is the same as a schema. In HyperSQL, several schemas can exist in the same database and
accessed transparently. In addition, a HyperSQL server supports multiple separate databases.

InMySQL, older, non-standard, forms of database object name case-sensitivity makeisdifficult to port applications.
The modern form, which encloses case-sensitive namesin doubl e quotes, follows the SQL standard and i s supported

by HyperSQL.
Almost all MySQL functions are supported, including GROUP_CONCAT.

For fine control over type conversion, check the settings for SET DATABASE SQ. CONVERT TRUNCATE
FALSE

Avoid using concatenation of possibly NULL values in your select statements. If you have to, change the setting
with the SET DATABASE SQ. CONCAT NULLS FALSE

If your application relies on MySQL behaviour for ordering of nullsin SELECT statements with ORDER BY, use
both SET DATABASE SQL NULLS FI RST FALSE and SET DATABASE SQ. NULLS ORDER FALSE
to change the defaullts.

In CREATE TABLE, MySQL syntax for KEYS, INDEX, COMMENT and some other features is supported.

MySQL supportsmost SQL Standard types (except INTERV AL types), aswell asnon-standard types, which areal so
supported by HyperSQL. Supported types include SMALLINT, INT, BIGINT, DOUBLE, FLOAT, DECIMAL,
NUMERIC, VARCHAR, CHAR, BINARY, VARBINARY, BLOB, DATE, TIMESTAMP (al Standard SQL) and
TINYINT, DATETIME (non Standard). UNSIGNED types are converted to signed.

In MY S syntax compatibility mode, HyperSQL translates MySQL's ENUM data type to VARCHAR with a check
constraint on the enum values. Data types such as TEXT, TINYTEXT, TINYLOB, MEDIUMLOB are trand ated
to Standard VARCHAR or BINARY types.

In MY S syntax compatibility mode, HyperSQL supports MySQL's non-standard version of INTERVAL symbols
such as DAY_HOUR and DAY_SECOND in DATEADD and DATESUB functions. The SQL Standard form is
DAY TOHOUR or DAY TO SECOND.

MySQL uses anon-standard expression, SELECT ' A Test String' toreturnasinglerow table. The standard
formisVALUES(' A Test String').InMYSsyntax mode, thistype of SELECT is supported.

Indexes defined inside CREATE TABLE statements are accepted and created. The index names must be unique
within the schema.

HyperSQL supports ON UPDATE CURRENT_TIMESTAMP for column definitions in CREATE TABLE
statements.

262

HyperS@L Compatibility With Other DBMS

» HyperSQL supportsand transates INSERT IGNORE, REPLACE and ON DUPLICATE KEY UPDATE variations
of INSERT into predictable and error-free operations. These MySQL variations do not throw an exception if any of
the inserted rows would violate aPRIMARY KEY or UNIQUE constraint, and take a different action instead.

When INSERT IGNORE isused, if any of theinserted rowswouldviolateaPRIMARY KEY or UNIQUE constraint,
that row isnot inserted. With multi-row inserts, therest of therowsarethen inserted only if thereisno other violation
such aslong strings or type mismatch, otherwise the appropriate error is returned.

When REPLACE or ON DUPLICATE KEY UPDATE isused, the rows that need replacing or updating are updated
with the given values. This works exactly like an UPDATE statement for those rows. Referential constraints and
other integrity checks are enforced and update triggers are activated. The row count returned is simply the total
number of rows inserted and updated.

With all the above statements, unique indexes are not considered the same as unique constraints for the alternative
action and an exception is thrown if there is violation of a unique index. It is generally better to create a unique
constraint instead of a unique index.

» MySQL user-defined function and procedure syntax isvery similar to SQL Standard syntax supported by HSQLDB.
A few changes may till be required.

Firebird Compatibility
Firebird generally follows the SQL Standard. Applications can be ported to HyperSQL without difficulty.

Apache Derby Compatibility

Apache Derby supports a smaller subset of the SQL Standard compared to HyperSQL. Applications can be ported to
HyperSQL without difficulty.

* UseMVCC with SET DATABASE TRANSACTI ON CONTROL MVCCif your application is multi-user.

» HyperSQL supports Java language functions and stored procedures with the SQL Standard syntax, which issimilar
to the way Derby supports these features.

Oracle Compatibility

Recent versions of Oracle support Standard SQL syntax for outer joins and many other operations. In addition,
HyperSQL features a setting to support Oracle syntax and semantics for the most widely used non-standard features.

e Use SET DATABASE SQL SYNTAX ORA TRUE or the equivalent URL property sqgl . synt ax_or a=true
to enable support for some non-standard syntax of Oracle.

* UseMVCC with SET DATABASE TRANSACTI ON CONTROL MVCCif your application is multi-user.

* Fine control over MV CC deadlock avoidance is provided by the SET DATABASE TRANSACTI ON ROLLBACK
ON CONFLI CT FALSE and the corresponding hsql db. t x_confli ct _rol | back connection property.

« If your application relies on Oracle behaviour for nullsin multi-column UNIQUE constraints, use SET DATABASE
SQL UNI QUE NULLS FALSE to change the default.

« If your application relies on Oracle behaviour for ordering of nullsin SELECT statements with ORDER BY, but
without NULLS FIRST or NULLS LAST, use both SET DATABASE SQ. NULLS FI RST FALSE and SET
DATABASE SQ. NULLS ORDER FALSE to change the defaullts.

« If you use the non-standard concatenation of possibly NULL values in your select statements, you may need to
change the setting for SET DATABASE SQL CONCAT NULLS FALSE.

263

HyperS@L Compatibility With Other DBMS

You may want to use SET DATABASE COLLATI ON SQ._TEXT NO PAD to take into account differencesin
trailing spaces in string comparisons.

Many Oracle functions are supported, including no-arg functions such as SYSDATE and SYSTIMESTAMP and
more complex ones such as TO_DATE and TO_CHAR.

Non-standard data type definitions such as NUMBER, VARCHAR2, NVARCHAR?2, BINARY_DOUBLE,
BINARY_FLOAT, LONG, RAW aretrandlated into the closest SQL Standard equivalent in ORA mode.

Non-standard column DEFAULT definitionsin CREATE TABLE, such as the use of DUAL with a SEQUENCE
function are supported and translated in ORA syntax mode.

The DATE typeisinterpreted as TIMESTAMP(0) in ORA syntax mode.
The DUAL table and the expressions, ROWNUM, CURRVAL, NEXTVAL are supported in ORA syntax mode.

HyperSQL natively supports operations involving datetime and interval values. These features are based on the
SQL Standard.

Many subtle automatic type conversions, syntax refinements and other common features are supported.
SQL routinesin PL/SQL are generally portable, but some changes are required.

More advanced compatibility is offered by HyperXtremeSQL, which is a product based on HyperSQL. It supports
more function compatibility, the PL/HXSQL language with a similar syntax to PL/SQL, extensive support for
additional aggregate functions, window analytic functions with OVER(PARTITION ... ORDER ... ROWS |
RANGE ...) and WITHIN GROUP (ORDER BY).

DB2 Compatibility

DB2 is highly compatible with the SQL Standard (except for itslack of support for the INFORMATION_SCHEMA).
Applications can be ported to HyperSQL without difficulty.

Use SET DATABASE SQ. SYNTAX DB2 TRUE or the equivalent URL property sql . synt ax_db2=t r ue
to enable support for some non-standard syntax of DB2.

Use MVCC with SET DATABASE TRANSACTI ON CONTRCL MVCCIif your application is multi-user.

HyperSQL supports almost the entire syntax of DB2 together with many of the functions. Even local temporary
tables using the SESSION pseudo schema are supported.

The DB2 binary type definition FOR BIT DATA, aswell asempty definition of column default values are supported
in DB2 syntax mode.

Many DB2 functions are supported.
The DUAL table and the expressions, ROWNUM, CURRVAL, NEXTVAL are supported in DB2 syntax mode.
SQL routines are highly portable with minimal change.

More advanced compatibility is offered by HyperXtremeSQL, which is a product based on HyperSQL. It has
extensive support for additional aggregate functions, window analytic functions with OVER(PARTITION ...
ORDER BY ... ROWS| RANGE ...) and WITHIN GROUP (ORDER BY ...).

MS SQLServer and Sybase Compatibility

SQL Server has some incompatibilities with the Standard syntax. The most significant is the use of square brackets
instead of double quotes for case-sensitive column names.

264

HyperS@L Compatibility With Other DBMS

e Use SET DATABASE SQL SYNTAX MSS TRUE or the equivalent URL property sqgl . synt ax_nss=true
to enable support for the CONVERT(<t ype definition>, <expression) function with switched order
of arguments

* Use MVCC with SET DATABASE TRANSACTI ON CONTROL MVCCif your application is multi-user.

* If you use the non-standard concatenation of possibly NULL values in your select statements, you may need to
change the setting for SET DATABASE SQL CONCAT NULLS FALSE.

e HyperSQL supports + for string concatenation.

» SQLServer uses a non-standard expression, SELECT ' A Test String' toreturn asingle row table. The
standard form isVALUES(' A Test String').InMSS syntax mode, thistype of SELECT is supported.

* SQLServer's non-standard data types, MONEY, UNIQUEIDENTIFIER, DATETIME2, DATETIMEOFFSET,
IMAGE, TEXT, NTEXT, are translated to their SQL Standard equivalents.

e HyperSQL 2.5 supports several datetime functions in MSS compatibility mode. These include DATEPART,
DATENAME, EOMONTH and compatible DATEADD and DATEDIFF behaviour.

» SQL routines need quite alot of changes.

» More advanced compatibility is offered by HyperXtremeSQL, which is a product based on HyperSQL. It has
extensive support for additional aggregate functions, window analytic functions with OVER(PARTITION ...
ORDER BY ... ROWS|RANGE ...) and WITHIN GROUP (ORDER BY ...).

265

HyperS@L

Chapter 13. Properties

Fred Toussi, The HSQL Development Group

$Revision: 6135 $

Copyright 2002-2020 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.

2020-06-29

Connection URL

The normal method of accessing a HyperSQL catalog is via the JDBC Connection interface. An introduction to
different methods of providing database services and accessing them can be found in the SQL Language chapter.
Details and examples of how to connect via JDBC are provided in our JavaDoc for JDBCConnecti on .

A uniform method is used to distinguish between different types of connection. The common driver identifier is
jdbc: hsqgl db: followed by a protocol identifier (mem: file: res: hsgl: http: hsgls: https:) then followed by host
and port identifiersin the case of servers, then followed by database identifier. Additional property / value pairs can
be appended to the end of the URL, separated with semicolons.

Table 13.1. Memory Database URL

Driver and Protocol Host and Port Example Database Example

j dbc: hsql db: mem not available accounts

Lowercase, single-word identifier creates the in-memory database when the first connection is made. Subsequent
use of the same Connection URL connects to the existing DB.

The old form for the URL, j dbc: hsql db: . creates or connectsto the same database as the new form for the
URL,j dbc: hsqgl db: mem .

Table 13.2. File Database URL

Driver and Protocol Host and Port Example Database Example

accounts
/ opt / db/ account s
C. / dat a/ nydb

j dbc: hsql db: file: not available

Thefile path specifies the database files. It should consist of arelative or absolute path to the directory containing
the database files, followed by a'/' and the database name. In the above examples the first one refers to a set of
mydb.* filesin the directory where thej ava command for running the application was issued. The second and
third examples refer to absolute paths on the host machine: For example, files named accounts.* in the directory /
opt/db for the accounts database.

Table 13.3. Resour ce Database URL

Driver and Protocol

Host and Port Example

Database Example

j dbc: hsql db: res:

not available

/ adi rect ory/ dbnane

266

Hypers L Properties

Driver and Protocol Host and Port Example Database Example

Database files can be loaded from one of the jars specified as part of the Java command the same way as resource
files are accessed in Java programs. The/ adi r ect or y above stands for a directory in one of the jars.

Table 13.4. Server Database URL

Driver and Protocol Host and Port Example Database Example
j dbc: hsqgl db: hsql : /11 ocal host /an_alias

j dbc: hsql db: hsql s: /1192.0.0.10: 9500 /enrol nents

j dbc: hsqgl db: htt p: /] dbserver. sonedonai n. com|/ qui ckdb

j dbc: hsql db: htt ps:

The host and port specify the |P address or host name of the server and an optional port number. The database to
connect to is specified by an alias. This aliasis alowercase string defined inthe ser ver . properti es fileto
refer to an actual database on the file system of the server or atransient, in-memory database on the server. The
following examplelinesinser ver. properti es orwebserver. properti es definethe database aliases
listed above and accessible to clientsto refer to different file and in-memory databases.

The old form for the server URL, e.g., j dbc: hsql db: hsqgl / /| ocal host connectsto the same database as
the new form for the URL, j dbc: hsql db: hsql / /| ocal host / wherethe aliasisazero length string.

Variables In Connection URL

Two types of variables are allowed for file: database URL's. properties for individual connections, and Properties for
the whole database. The database properties have an effect only if used for the first connection to the database (the
connection which opens the database). When running a server, these variables are not used on the connection URL
but can be appended to the database path URL in server.properties or the server command line.

If the database part of a file: database begins with ~/ or ~\ the tilde character is replaced with the value of the
system property " user . hone" resulting in the database being created or accessed in this directory, or one of its
subdirectories. In the examples below, the database files for mydb and fi | edb are located in the user's home
directory.

jdbc: hsql db: fil e: ~/ nydb
jdbc: hsqgl db: file:~/fil edb; shut down=true

If the database URL contains a string in the form of ${ pr opnane} then the sequence of charactersis replaced with
the system property with the given name. For example, you can use thisin the URL of adatabase that is used in aweb
application and define the system property, "propname” in the web application properties. In the example below, the
string ${ mydbpat h} isreplaced with the value of the property, mydbpat h

‘ jdbc: hsql db: fil e: ${ nydbpat h}

Properties for Individual Connections

Each JDBC Connection to a database can specify connection properties. The properties user and password are always
required. The following optional properties can aso be used.

Connection properties are specified either by establishing the connection via the method call below, or the property
can be appended to the full Connection URL. Some of the other properties can be used for any connection, including
connection to a Server but the others have an effect only with the first connection to afile: or mem: database, or when
appended to the database path URL in server.properties or the server command line.

‘ Dri ver Manager . get Connection (String url, Properties info);

267

HyperS@L Properties

Table 13.5. User and Password

Name Default |Description

user SA user name

Standard property. This property is case sensitive. Example below:

‘ jdbc: hsqgl db: fil e: enrol ments; user=aUser Nane; i f exi st s=true

password enpty [password for the user
string

Standard property. This property is case sensitive. Example below:

‘ jdbc: hsqgl db: fil e: enrol ments; user =aUser Nane; passwor d=3xLVz

For compatibility with other engines, a non-standard form of specifying user and password is also supported. In
this form, user name and password appear at the end of the URL string, prefixed respectively with the question
mark and the ampersand:

‘ jdbc: hsqgl db: fil e: enrol ments; creat e=f al se?user =aUser Nane&passwor d=3xLVz

Table 13.6. Closing old ResultSet when Statement isreused

Name Default |Description

close result fal se [closingtheold result set when anew ResultSet is
created by a Statement

This property is used for compatibility with the JIDBC specification. When true (the JDBC specification), a
Resul t Set that was previously returned by executing aSt at enent or Pr epar edSt at enent isclosed as
soon asthe St at ement is executed again.

The default is false as previous versions of HSQL DB did not close old result set. The user application should close
old result sets when they are no longer needed and should not rely on auto-closing side effect of executing the
Statement.

The default is false. When the property istrue, the old Resul t Set isclosed when a St at enent isre-executed.
Example below:

‘ jdbc: hsql db: hsql : //1 ocal host/ enrol nents; cl ose_resul t=true

When aResul t Set isused inside a user-defined stored procedure, the default, false, is aways used for this
property.

Table 13.7. Column Namesin JDBC ResultSet

Name Default |Description

get_column_name true column name in ResultSet

This property isused for compatibility with other IDBC driver implementations. When true (the default),
Resul t Set . get Col utmNane(i nt c) returnsthe underlying column name. This property can be specified
differently for different connections to the same database.

The default is true. When the property is false, the above method returns the same value as
Resul t Set . get Col utmLabel (i nt col um) Example below:

‘ j dbc: hsqgl db: hsql : / /1 ocal host/ enr ol nent s; get _col unn_nane=f al se

268

HyperS@L Properties

Name | Default | Description
When aResul t Set isused inside a user-defined stored procedure, the default, true, is always used for this
property.

Table 13.8. In-memory L OBs from JDBC ResultSet

Name Default |Description

memory_lobs fal se [lobsretrievedinfull from server by ResultSet

This property can be set to retrieve lobs as fully in-memory objects by the JIDBC driver. When false (the default),
Resul t Set methods for streaming BLOB and CLOB retrieve large lobs in chunks in order to limit memory
use on the client. When true, the lob isreturned fully as soon as it is streamed. This property can be specified
differently for different connections to the same database.

The default isfalse.

‘ j dbc: hsqgl db: hsql : //1 ocal host/ enrol nent s; nenory_| obs=true

Table 13.9. Empty batch in JDBC PreparedStatement

Name Default |Description

allow_empty_batch fal se |executeBatch with empty batch

This property is used for compatibility with other JDBC driver implementations such as the PostgreSQL driver. By
default Pr epar edSt at enent . execut eBat ch() throwsan exception if addBatch() has not been called at
all. Setting this property to true ignores the empty batch and returns an empty int[]. This property can be specified
differently for different connections to the same database.

The default is false. Example below:

‘ jdbc: hsqgl db: hsql : / /1 ocal host/ enrol ments; al | ow_enpty_bat ch=true

When aPr epar edSt at enent isused inside a user-defined stored procedure, the default, false, is aways used
for this property.

Table 13.10. Creating New Database

Name Default |Description
ifexists fal se [connectonly if database already exists

Has an effect only with mem: and file: database. When true, will not create a new database if one does not already
exist for the URL.

When the property is false (the default), a new mem: or file: database will be created if it does not exist.

Setting the property to true is useful when troubleshooting as no database is created if the URL is malformed.
Example below:

‘ jdbc: hsqgl db: file:enrol ments;ifexists=true

create true create the database if it does not exist

Similar to the ifexists property, but with opposite meaning.

Has an effect only with mem: and file: databases. When false, will not create a new database if one does not already
exist for the URL.

269

Hypers L Properties

Name | Default |Description
When the property istrue (the default), anew mem: or file: database will be created if it does not exist.

Setting the property to true is useful when troubleshooting as no database is created if the URL is malformed.
Example below:

‘ jdbc: hsqgl db: fil e:enrol ments; creat e=fal se ‘

Table 13.11. Automatic Shutdown

Name Default |Description
shutdown f al se [shut down the database when the last connection is closed

Has an effect only with mem: and file: databases. If this property ist r ue, when the last connection to a database
is closed, the database is automatically shut down. The property takes effect only when the first connection is
made to the database. This means the connection that opens the database. It has no effect if used with subsequent
connections.

This command has two uses. Oneis for test suites, where connections to the database are made from one VM
context, immediately followed by another context. The other use is for applications where it is not easy to
configure the environment to shutdown the database. Examples reported by users include web application servers,
where the closing of the last connection coincides with the web app being shut down.

‘ jdbc: hsqgl db: fil e: enrol ment s; shut down=t r ue ‘

In addition, when the first connection to an in-process file: or mem: database creates a new database all the user-
defined database properties can be specified as URL properties. See the next section for details.

Properties for the Database

Each database has several default settings (properties) that are listed in the System Management chapter. These
properties can be changed via SQL commands after a connection is made to the database. It is possible to specify most
of these properties in the connection properties or as part of the URL string when the first connection is made to a
new file: or mem: database. Thisallowsthe propertiesto be set without using any SQL commands. The corresponding
SQL command is given for each property. For a server, these properties can be appended to the database path URL
in server.properties or the server command line.

Note the preferred method of setting database properties is by using a set of SQL statements. These statements can
be used both for a new database or an existing database, unlike URL properties that are generally effective for new
databases only.

If the properties are used for connection to an existing database, they are ignored.

The exceptions are the following property settings that are allowed for the first connection to an
existing database (the connection which reopens the database): r eadonl y=true, fil es_readonl y=t r ue,
hsql db. | ock_fil e=fal se, hsql db. sql | og=1- 3, hsql db. appl og=1- 3. These specific property /
value pairs override the existing database properties. For example anormal database is opened asreadonly, or the lock
fileisnot created, or the sgl log level is set to a value between 1 and 3.

Properties for database encryption and compressed .script file are also required on the first connection to an existing
database.

Management of properties has changed since version 1.8. The old SET PROPERTY statement does not change a
property and isignored. The statement is retained to simplify application upgrades.

270

HyperS@L Properties

In the example URL below, two properties are set for the first connection to a new database.

‘ jdbc: hsqgl db: fil e: enrol ments; hsql db. cache_r ows=10000; hsql db. ni o_data_fil e=fal se ‘

In the table below, database properties that can be used as part of the URL or in connection properties are listed. For
each property that can also be set with an SQL statement, the statement is also given. These statements are described
more extensively in the System Management chapter.

Table 13.12. Validity Check Property

Name Default |Description

check_props fal se [checksthevalidity of the database properties

If the property istrue, every database property that is specified on the URL or in connection propertiesis checked
and if it isnot used correctly, an error is returned.

‘thi S property cannot be set with an SQ statenent ‘

SQL Conformance Properties

Table 13.13. Execution of Multiple SQL Statements etc.

Name Default |Description
sql.restrict_exec fal se [preventS execution of multiple, concatenated SQL
statements

This property, when set true, prevents execution of multiple, concatenated statements via
St at enent . execut e() and other methods of j ava. sql . St at enent . It also prevents the use of
St at ement . execut eQuer y() for any DDL or DML statement.

Legacy applications may contain such statements, for example "l NSERT | NTO T1 VALUES 1, 2,
3; DELETE FROM T2 WHERE C1 = 9";therefore the default isfalse. Statements that are prepared with
j ava. sql . Prepar edSt at erent have been limited to single statements since HyperSQL 2.0.

It is recommended to set this property to TRUE and use single execution of statements.

‘SET DATABASE SQL RESTRI CT EXEC { TRUE | FALSE }

Table 13.14. SQL Keyword Use as | dentifier

Name Default |Description

sgl.enforce_names fal se [|enforcing SQL keywords

This property, when set true, prevents SQL keywords being used for database object names such as columns and
tables.

|SET DATABASE SQL NAMES { TRUE | FALSE } |

Table 13.15. SQL Keyword Starting with the Underscore or Containing Dollar Characters

Name Default |Description
sgl.regular_names true enforcing SQL keywords

This property, when set true, prevents database object names such as columns and tables beginning with the
underscore or containing the dollar character.

271

HyperS@L Properties

Name |Defau|t |Descripti0n
|SET DATABASE SQL REGULAR NAMES { TRUE | FALSE }

Table 13.16. Reference to Columns Names

Name Default |Description

sgl.enforce refs fal se [enforcing column reference disambiguation

This property, when set true, causes an error when an SQL statement (usually a select statement) contains column
references that can be resolved by more than one table name or alias. In effect forces such column references to
have atable name or table alias qualifier.

'SET DATABASE SQU REFERENCES { TRUE | FALSE }

Table 13.17. String Size Declar ation

Name Default |Description

sgl.enforce size true size enforcement of string columns

Conformsto SQL standards for size and precision of datatypes. When true, all VARCHAR column type
declarations require a size. When the property is false and there is no size in the declaration, adefault size is used.
Note that al other types accept a declaration without a size, which isinterpreted as a default size.

|SET DATABASE SQL SI ZE { TRUE | FALSE } |

Table 13.18. Type Enforcement in Comparison and Assignment

Name Default |Description

sgl.enforce _types fal se [enforcing type compatibility

This property, when set true, causes an error when an SQL statements contains comparisons or assignments that are
non-standard due to type mismatch. Most illegal comparisons and assignments will cause an exception regardless
of this setting. This setting applies to a small number of comparisons and assignments that are possible, but not
standard conformant, and were allowed in previous versions of HSQLDB.

|SET DATABASE SQL TYPES { TRUE | FALSE } |

Table 13.19. Foreign Key Triggered Data Change

Name Default |Description

sgl.enforce tdc_delete true enforcing triggered data change violation for deletes

The ON DELETE and ON UPDATE clauses of constraints cause data changes in rows in different tables or the
same table. When there are multiple constraints, arow may be updated by one constraint and deleted by another
congtraint in the same operation. Thisis not allowed by default. Changing this property to false allows such
violations of the Standard to pass without an exception. Used for porting from database engines that do not enforce
the constraints.

'SET DATABASE SQU TDC DELETE { TRUE | FALSE } |

sgl.enforce_tdc_update true enforcing triggered data change violation for updates

The ON DELETE and ON UPDATE clauses of foreign key constraints cause data changes in rows in different
tables or the same table. With multiple constraint, afield may be updated by two constraints and set to different

272

HyperS@L Properties

Name Default |Description

values. Thisis not alowed by default. Changing this property to false allows such violations of the Standard to
pass without an exception. Used for porting from database engines that do not enforce the constraints properly.

'SET DATABASE SQL TDC UPDATE { TRUE | FALSE }

Table 13.20. Use of LOB for LONGVAR Types

Name Default |Description
sgl.longvar_is lob fal se [trandating longvarchar and longvarbinary to lob

This property, when set true, causes type declarations using LONGVARCHAR and LONGVARBINARY to be
translated to CLOB and BLOB respectively. By default, they are translated to VARCHAR and VARBINARY .

|SET DATABASE SQL LONGVAR IS LOB { TRUE | FALSE }

Table 13.21. Typeof string literalsin CASE WHEN

Name Default |Description
sgl.char_literal true result of CASE WHEN with strings of different lengths

This property, when set false, sets the type of al string literal to VARCHAR, as opposed to CHARACTER. This
results in strings not being padded with spaces by CASE WHEN expressions.

‘SET DATABASE SQL CHARACTER LI TERAL { TRUE | FALSE } ‘

Table 13.22. Concatenation with NUL L

Name Default |Description

sgl.concat_nulls true behaviour of concatenation involving one null

This property, when set false, causes the concatenation of anull and a not null value to return the not null value. By
default, it returns null.

|SET DATABASE SQL CONCAT NULLS { TRUE | FALSE } |

Table 13.23. NULL in Multi-Column UNIQUE Constraints

Name Default |Description
sgl.unique_nulls true behaviour of multi-column UNIQUE constraints with null
values

This property, when set fal se, causes multi-column unique constrains to be more restrictive for value sets that
contain amix of null and not null values.

|SET DATABASE SQL UNI QUE NULLS { TRUE | FALSE }

Table 13.24. Truncation or Rounding in Type Conversion

Name Default |Description
sgl.convert_trunc true behaviour of type conversion from DOUBLE to integral
types

This property, when set false, causes type conversions from DOUBLE to any integral type to use rounding. By
default truncation is used.

273

HyperS@L Properties

Name |Defau|t |Descripti0n
'SET DATABASE SQL CONVERT TRUNCATE { TRUE | FALSE }

Table 13.25. Decimal Scale of Division and AVG Values

Name Default |Description

sgl.avg_scale 0 decimal scale of values returned by division and the AVG
and MEDIAN aggregate functions

By default, the result of adivision or an AVG or MEDIAN aggregate has the same type and scale as the aggregated
value. For INTEGER types, the scale is 0. When this property is set to a value other than the default O, then
thescaleisused if it is greater than the scale of the divisor or aggregated value. This property does not affect
DOUBLE values. Vaues between 0 - 10 can be used for this property.

‘SET DATABASE SQ. AVG SCALE <nuneric val ue>

Table 13.26. Support for NaN values

Name Default |Description

sgl.double_nan true behaviour of expressions returning DOUBLE NaN

This property, when set false, causes division of DOUBLE values by Zero to return a Double.NaN value. By
default an exception is thrown.

‘SET DATABASE SQL DOUBLE NAN { TRUE | FALSE }

Table 13.27. Sort order of NULL values

Name Default |Description

sgl.nulls first true ordering of NULL values

By default, nulls appear before not-null values when aresult set is ordered without specifying NULLS FIRST or
NULLSLAST. This property, when set false, causes nullsto appear by default after not-null valuesin result sets
with ORDER BY

‘SET DATABASE SQL NULLS FIRST { TRUE | FALSE }

Table 13.28. Sort order of NULL valueswith DESC

Name Default |Description

sgl.nulls_order true ordering of NULL values when DESC is used

By default, when an ORDER BY clause that does not specify NULLS FIRST or NULLS LAST is used, nullsare
ordered according tothesql . nul I s_f i r st setting even when DESC is used after ORDER BY . This property,
when set false, causes nulls to appear in the opposite position when DESC is used.

|SET DATABASE SQL NULLS ORDER { TRUE | FALSE }

Table 13.29. String Comparison with Padding

Name Default |Description

sgl.pad_space true ordering of strings with trailing spaces

274

HyperS@L Properties

Name |Defau|t |Description

By default, when two strings are compared, the shorter string is padded with spaces before comparison. When this
property is set false, no padding takes place before comparison. Without padding, the shorter string is never equal
to the longer one.

Before version 2.0, HSQLDB used NO PAD comparison. If you need the old behaviour, use this property when
opening an older database.

|SET DATABASE COLLATION <col | ation name> [NO PAD | PAD SPACE] |

Table 13.30. Default L ocale L anguage Collation

Name Default |Description
sgl.compare_in_locale fal se [usethedefault localelanguage collation

When this property is set true, the language of the default locale of the VM is used as the default collation. Thisis
applied to new databases only.

‘SET DATABASE COLLATI ON <col | ati on nane> ‘

Table 13.31. Case-I nsensitive Varchar columns

Name Default |Description

sgl.ignore_case fal se [case-insensitive VARCHAR

When this propery is set true, all VARCHAR declarationsin CREATE TABLE and other statements are assigned
an Upper Case Comparison collation, SQL_TEXT_UCC. Thisisdesigned for compatibility with some databases
that use case-insensitive comparison. It is better to specify the collation selectively for specific columns that require
it.

'SET DATABASE COLLATI ON SQ._TEXT_UCC

Table 13.32. Storage of Live Java Objects

Name Default |Description
sgl.live_object fal se [storage of JavaObjectsin OTHER columns with or
without serialization

By default when Java Objects are stored in a column of type OTHER, the objects are serialized. Setting this
property to true results in the Object to be stored without serialization. This option is available in mem: database

only.

\SET DATABASE LI VE OBJECT \

Table 13.33. Names of System Indexes Used for Constraints

Name Default |Description

sgl.sys index_names fal se [name of system generated indexes for constraints

HSQL DB automatically creates a system index for each PRIMARY KEY, UNIQUE and FOREIGN KEY
constraint. By default the names of those indexes are generated the system as a string beginning with SYS . When
the setting is changed to true, the names will be the same as the constraint names.

|SET DATABASE SQL SYS | NDEX NAMES { TRUE | FALSE } |

275

HyperS@L Properties

Table 13.34. DB2 Style Syntax

Name Default |Description

sgl.syntax_db2 fal se [supportfor DB2 style syntax

This property, when set true, allows compatibility with some aspects of this dialect.

'SET DATABASE SQL SYNTAX DB2 { TRUE | FALSE }

Table 13.35. MSSQL Style Syntax

Name Default |Description
sgl.syntax_mss fal se [supportfor MS SQL Server style syntax

This property, when set true, switches the arguments of the CONVERT function and also allow compatibility with
some other aspects of this dialect.

'SET DATABASE SQL SYNTAX MBS { TRUE | FALSE } |

Table 13.36. MySQL Style Syntax

Name Default |Description

sgl.syntax_mys fal se [supportfor MySQL style syntax

This property, when set true, enables support for TEXT and AUTO_INCREMENT types and also allow
compatibility with many other aspects of this dialect.

‘SET DATABASE SQL SYNTAX MYS { TRUE | FALSE }

Table 13.37. Oracle Style Syntax

Name Default |Description

sgl.syntax_ora fal se [support for Oracle style syntax

This property, when set true, enables support for non-standard types. It also enables DUAL, ROWNUM,
NEXTVAL and CURRVAL syntax and and also allow compatibility with some other aspects of this dialect.

‘SET DATABASE SQL SYNTAX ORA { TRUE | FALSE } ‘

Table 13.38. PostgreSQL Style Syntax

Name Default |Description

sgl.syntax_pgs fal se [support for PostgreSQL style syntax

This property, when set true, enables support for TEXT and SERIAL types. It also enablesNEXTVAL,
CURRVAL and LASTVAL syntax and also allow compatibility with some other aspects of this dialect.

‘SET DATABASE SQL SYNTAX PGS { TRUE | FALSE }

Database Operations Properties

Table 13.39. Default Table Type

Name Default |Description
hsgldb.default_table type menor y |type of table created with unqualified CREATE TABLE

276

Properties

HyperS@L

Name | Default | Description

The CREATE TABLE command resultsin aMEMORY table by default. Setting the value cached for this property
will result in a cached table by default. The qualified forms such as CREATE MEMORY TABLE or CREATE
CACHED TABLE are not affected at all by this property.

‘SET DATABASE DEFAULT TABLE TYPE { CACHED | MEMCORY }

Table 13.40. Transaction Control Mode
Name Default |Description
hsgldb.tx | ocks |database transaction control mode

Indicates the transaction control mode for the database. The values, | ocks, nvl ocks and mvcc are allowed.

'SET DATABASE TRANSACTI ON CONTROL { LOCKS | MVLOCKS | MVCC } |

Table 13.41. Default I solation Level for Sessions

Name Default |Description
hsgldb.tx_level r ead_cqoatiabasd default transaction isolation level

Indicates the default transaction isolation level for each new session. The values, read committed and serializable
are alowed. Individual sessions can change their isolation level.

‘SET DATABASE DEFAULT | SOLATI ON LEVEL { READ COW TTED | SERI ALI ZABLE }

Table 13.42. Transaction Rollback in Deadlock

Name Default |Description
hsgldb.tx_conflict_rollback true effect of deadlock or other conflicts on transaction

When atransaction deadlock or other unresolvable conflict is about to happen, the current transaction is rolled
back and an exception israised. When this property is set false, the transaction is not rolled back. Only the latest
action that would cause the conflict is undone and an error is returned. The property should not be changed unless
the application can quickly perform an alternative statement and complete the transaction. It is provided for
compatibility with other database engines which do not roll back the transaction upon deadl ock.

‘SET DATABASE TRANSACTI ON ROLLBACK ON CONFLICT { TRUE | FALSE }

Table 13.43. Transaction Rollback on Interrupt

Name Default |Description
hsgldb.tx_interrupt_rollback fal se [effect of Thread interrupt on transaction

In an in-process database, when athread in the user's application is executing an SQL statement and it is
interrupted, the interrupt is cleared by HyperSQL. Y ou can set this property to true to force arollback of the
transaction (only if the interrupt is detected). With this setting the interrupt is not cleared.

‘SET DATABASE TRANSACTI ON ROLLBACK ON | NTERRUPT { TRUE | FALSE }

Table 13.44. Time Zone and Interval Types

Name Default |Description
hsgldb.trandlate tti_types true usage of type codes for advanced datetime and interval
types

277

HyperS@L Properties

Name |Defau|t |Description

If the property istrue, the TIME/ TIMESTAMP WITH TIME ZONE types and INTERVAL types are represented
in JDBC methods of Resul t Set Met aDat a and Dat abaseMet aDat a as JDBC datetime types without time
zone and the VARCHAR type respectively. The original type names are preserved.

‘SET DATABASE SQL TRANSLATE TTI TYPES { TRUE | FALSE }

Database File and Memory Properties

Table 13.45. Opening Database as Read Only

Name Default |Description
readonly fal se [readonly database - isused to open an existing file:
database

This property is a special property that can be added manually to the .propertiesfile, or included in the URL or
connection properties. When this property istrue, the database becomes readonly. This can be used with an existing
database to open it for readonly operation.

‘this property cannot be set with an SQL statement - it can be used in the .properties file

Table 13.46. Opening Database Without M odifying the Files

Name Default |Description
files_readonly fal se [readonly files database - is used to open an existing file:
database

This property is used similarly to the hsgldb.readonly property. When this property istrue, CACHED and TEXT
tables are readonly but memory tables are not. Any change to the data is not persisted to database files.

‘this property cannot be set with an SQL statenment - it can be used in the .properties file

Table 13.47. Huge database files and tables

Name Default |Description

hsgldb.large data fal se [enablehuge database files - can also be used to open an
existing file: database

By default, up to 2 billion rows can be stored in all disk-based CACHED tables. Setting this property to true
increases the limit to 256 hillion rows. This property is used as a connection property.

this property cannot be set with an SQL statenent - it can be used as a connection property for
the connection that opens the database

Table 13.48. Event Logging

Name Default |Description

hsgldb.applog 0 application logging level - can also be used when opening
an existing file: database

The default level 0 indicates no logging. Level 1 resultsin minimal logging, including any failures. Level 2
indicates all events, including ordinary events. LEVEL 3 adds details of some of the normal operations. The events
are logged in afile ending with ".app.log".

278

HyperS@L Properties

Name |Defau|t |Descripti0n
|SET DATABASE EVENT LOG LEVEL { 0 | 1| 2| 3}

Table 13.49. SQL Logging

Name Default |Description

hsgldb.sgllog 0 sgl logging level - can also be used when opening an
existing file: database

The default level 0 indicates no logging. Level 1 logs only commits and rollbacks. Level 2 logs al the SQL
statements executed, together with their parameter values. Long statements and parameter values are truncated.
Level 3issimilar to Level 2 but does not truncate long statements and values. The events are logged in afile
ending with ".sgl.log". This property appliesto existing file: databases as well as new databases.

'SET DATABASE EVENT LOG SQU LEVEL { 0| 1| 2| 3}

Table 13.50. Temporary Result Rowsin Memory

Name Default |Description
hsgldb.result_max_memory_rows 0 storage of temporary results and tables in memory or on
disk

This property can be set to specify how many rows of each results or temporary table are stored in memory before
the table is written to disk. The default is zero and means datais always stored in memory. If this setting is used, it
should be set above 1000.

‘SET DATABASE DEFAULT RESULT MEMORY ROWS <nuneric val ue>

Table 13.51. Unused Space Recovery

Name Default |Description

hsgldb.cache_free count 512 maximum number of unused space recovery - can also be
used when opening an existing file: database

The default indicates 512 unused spaces are kept for later use. The value can range between 0 - 8096.

When rows are deleted, the space is recovered and kept for reuse for new rows. If too many rows are deleted, the
smaller recovered spaces are lost and the largest ones are retained for later use. Normally there is no need to set this

property.

‘thi S property cannot be set with an SQ statenent

Table 13.52. Rows Cached In Memory

Name Default |Description

hsgldb.cache rows 50000 |maximum number of rowsin memory cache

Indicates the maximum number of rows of cached tables that are held in memory.

The value can range between 100- 4 million. If the valueis set via SET FILES CACHE ROWS then it becomes
effective after the next database SHUTDOWN.

‘SET FI LES CACHE ROAS <nuneric val ue>

279

HyperS@L Properties

Table 13.53. Size of Rows Cached in Memory

Name Default |Description

hsgldb.cache_size 10000 |memory cachesize

Indicates the total size (in kilobytes) of rowsin the memory cache used with cached tables. This size is calculated
asthe binary size of the rows, for example an INTEGER is 4 bytes. The actual memory size used by the objectsis

2 to 4 times this value. This depends on the types of objectsin database rows, for example with binary objects the
factor islessthan 2, with character strings, the factor isjust over 2 and with date and timestamp objects the factor is
over 3.

The value can range between 100 KB - 4 GB. The default is 10,000, representing 10,000 kilobytes. If the valueis
set via SET FILES then it becomes effective after the next database SHUTDOWN or CHECKPOINT.

\SET FI LES CACHE SI ZE <nuneric val ue> \

Table 13.54. Size Scale of Disk Table Storage

Name Default |Description

hsgldb.cache file scae 32 unit used for storage of rowsin the .datafile

The default value corresponds to a maximum size of 64 GB for the .data file. This can be increased to 64, 128,
256, 512, or 1024 resulting in up to 2 TB GB storage. Settings below 32 in older databases are preserved until a
SHUTDOWN COMPACT.

\SET FI LES SCALE <numeric val ue> \

Table 13.55. Size Scale of LOB Storage

Name Default |Description
hsgldb.lob_file_scale 32 unit used for storage of lobsin the .lobsfile

The default value represents units of 32KB. When the average size of individual lobsin the database is smaller, a
smaller unit can be used to reduce the overall size of the .lobsfile. Values 1, 2, 4, 8, 16, 32 can be used.

‘SET FI LES LOB SCALE <numeric val ue>

Table 13.56. Compression of BLOB and CL OB data

Name Default |Description

hsgldb.lob_compressed fal se |useof compression for storage of blobs and clobs

The default value is false, indicating no compression. When the value is true at the time of creation of anew
database, blobs and clobs are stored as compressed parts.

'SET FILES LOB COVPRESSED { TRUE | FALSE }

Table 13.57. Internal Backup of Database Files

Name Default |Description

hsgldb.inc_backup true incremental backup of datafile

Asthe contents of the .datafile are modified during database operation, the original contents are backed up
gradually. This allows fast checkpoint and shutdown.

280

Properties

HyperS@L

Name |Defau|t |Description

With HSQLDB up to version 2.5.0 it was possible to set the property false in order to have the .datafile backed up
entirely at the time of checkpoint and shutdown.

From version 2.5.1, this property has no effect and backup is always incremental.

‘SET FI LES BACKUP | NCREMENT { TRUE | FALSE }

Table 13.58. Use of L ock File

Name Default |Description
hsgldb.lock_file true use of lock file - can also be used with an existing file:
database

By default, alock fileis created for each file database that is opened for read and write. This property can be
specified with the value fal se to prevent the lock file from being created. This usage is not recommended but
may be desirable when flash type storage is used. This property appliesto existing file: databases as well as new
databases.

‘this property cannot be set with an SQ statenent

Table 13.59. L ogging Data Change Statements

Name Default |Description

hsgldb.log_data true logging data change

This property can be set to f al se when database recovery in the event of an unexpected crash is not necessary.
A database that is used as atemporary cache is an example. Regardless of the value of this property, if thereis
aproper shutdown of the database, all the changed datais stored. A checkpoint or shutdown still rewrites the

. script fileand savesthe. backup file according to the other settings.

SET FILES LOG { TRUE | FALSE }

Table 13.60. Automatic Checkpoint Frequency

Name Default |Description
hsgldb.log_size 50 size of log when checkpoint is performed

The value is the size (in megabytes) that the . | og file can reach before an automatic checkpoint occurs. A
checkpoint rewritesthe . scri pt fileand clearsthe. | og file.

‘SET FI LES LOG Sl ZE <nuneric val ue>

Table 13.61. Automatic Defrag at Checkpoint

Name Default |Description
hsgldb.defrag_limit 0 percentage of unused space causing a defrag at checkpoint

When a checkpoint is performed, the percentage of wasted space in the .datafileis calculated. If the wasted

space is above the specified limit, adefrag operation is performed. The default is 0, which means no automatic
checkpoint. The numeric value must be between 0 and 100 and is interpreted as a percentage of the current size of
the .datafile. Positive values less than 25 are converted to 25.

‘SET FI LES DEFRAG <nuneric val ue>

281

HyperS@L Properties

Table 13.62. Compression of the .script file

Name Default |Description

hsgldb.script_format 0 compressed .script file

If the property is set with the value 3, the .script file is stored in compressed format. Thisis useful for large script
files. The .script is no longer readable when the hsgl db. scri pt _f or mat =3 has been used.

‘Thi S property cannot be set with an SQ statenent

Table 13.63. Logging Data Change Statements Frequency

Name Default |Description

hsgldb.write_delay true write delay performing fsync of log file entries

If the property istrue, the default WRITE DELAY property of the database is used, which is 500 milliseconds. If
the property isfalse, the WRITE DELAY is set to 0 seconds. The log iswritten to file regardless of this property.
The property controls the fsync that forces the written log to be persisted to disk. The SQL command for this
property allows more precise control over the property.

‘SET FI LES WRI TE DELAY {{ TRUE | FALSE } | <seconds value> | <milliseconds value> MLLIS

Table 13.64. Logging Data Change Statements Frequency

Name Default |Description

hsgldb.write delay millis 500 write delay for performing fsync of log file entries

If the property isused, the WRITE DELAY property of the database is set the given value in milliseconds. The
property controls the fsync that forces the written log to be persisted to disk. The SQL command for this property
allows the same level of control over the property.

‘SET FI LES WRI TE DELAY {{ TRUE | FALSE } | <seconds value> | <nilliseconds value> MLLIS

Table 13.65. Use of NIO for Disk Table Storage

Name Default |Description

hsgldb.nio_data file true use of nio access methods for the .datafile

Setting this property to f al se will avoid the use of nio access methods, resulting in somewhat reduced speed. If
the datafileislarger than hsql db. ni o_nmax_si ze (default 256MB) when it isfirst opened (or when its size

isincreased), nio access methods are not used. Also, if the file gets larger than the amount of available computer

memory that needs to be allocated for nio access, non-nio access methods are used.

'SET FILES NIO { TRUE | FALSE }

Table 13.66. Use of NI O for Disk Table Storage

Name Default |Description

hsgldb.nio_max_size 256 nio buffer size limit

The maximum size of .datafile in mega bytes that can use the nio access method. When the file gets larger than
this limit, non-nio access methods are used. Values 64, 128, 256, 512, 1024, and larger multiples of 512 can be
used. The default is 256MB.

\SET FILES NI O SI ZE <nuneric val ue>

282

HyperS@L Properties

Table 13.67. Recovery L og Processing

Name Default |Description

hsgldb.full_log replay fal se [recovery log processing

The .log file is processed during recovery after aforced shutdown. Out of memory conditions always abort the
startup. Any other exception stops the processing of the .log file and by default, continues the startup process.
If this property istrue, the startup processis stopped if any exception occurs. Exceptions are usually caused by
incomplete lines of SQL statements near the end of the .1og file, which were not fully synced to disk when an
abnormal shutdown occurred.

‘Thi s property cannot be set with an SQ statenent

Table 13.68. Default Propertiesfor TEXT Tables

Name Default |Description

textdb.* 0 default properties for new text tables

Properties that override the database engine defaults for newly created text tables. Settings in the text table SET
<t abl enanme> SOURCE <source string> command override both the engine defaults and the database
properties defaults. Individual textdb.* propertiesare listed in the Text Tables chapter.

Table 13.69. Forcing Garbage Collection

Name Default |Description

runtime.gc_interval 0 forced garbage collection

No-op setting previously used to forces garbage collection each time a set number of result set row or cache row
objects are created. This setting has no effect in version 2.5.0 or later,

‘SET DATABASE GC <nuneric val ue>

Crypt Properties

Table 13.70. Crypt Property For LOBs

Name Default |Description

crypt_lobs true encryption of lobs

With encrypted databases, if this property istrue, the contents of the .lobs file are also encrypted. HyperSQL
versions prior to 2.3.0 did not support encrypted |obs. Encrypted databases created with those versions must be
opened with crypt_lobs=false on the URL when they contain lobs.

‘thi s property cannot be set with an SQ statenent

Table 13.71. Cipher Key for Encrypted Database

Name Default |Description

crypt_key none encryption

The cipher key for an encrypted database.

‘thi S property cannot be set with an SQ statenent

283

HyperS@L

Properties

Table 13.72. Cipher Initialization Vector for Encrypted Database

Name

Default

Description

crypt_iv

none

encryption

The initialization vector for an encrypted database. Optional feature introduced in version 2.5.0.

‘thi s property cannot be set with an SQ statenent

Table 13.73. Crypt Provider Encrypted Database

Name

Default

Description

crypt_provider

none

encryption

provider.

The fully-qualified class name of the cryptography provider. This property is not used for the default security

‘thi s property cannot be set with an SQ statenent

Table 13.74. Cipher Specification for Encrypted Database

Name

Default

Description

crypt_type

none

encryption

The cipher specification.

‘thi S property cannot be set with an SQ statenent

When connecting to an in-process database creates a new database, or opens an existing database (i.e. it is the first
connection made to the database by the application), al the user-defined database properties listed in this section can

be specified as URL properties.

When HyperSQL is used with OpenOffice.org as an externa database, the property "default_schema=true" must be
set on the URL, otherwise the program will not operate correctly as it does with its built-in hsgldb instance.

System Properties

A few system properties are used by HyperSQL. These are set on the Java command line or by caling
System.setProperty() from the user's program. They are not valid as URL or connection properties.

Table 13.75. Logging Framework

Name

Default

Description

hsgldb.reconfig_logging

true

configuring the framework logging

Setting this system property false avoids reconfiguring the framework logging system such as Log4J or
java.util.Logging. If the property does not exist or is true, reconfiguration takes place.

Table 13.76. Text Tables

Name

Default

Description

textdb.allow_full_path

fal se

text table file locations

284

HyperS@L Properties

Name |Defau|t |Description

Setting this system property true allows text table sources and files to be opened on all available paths. It aso
allows pure mem: databases to open such files. By default, only the database directory and its subdirectories are
allowed. See the Text Tables chapter.

Table 13.77. Java Functions

Name Default |Description

hsgldb.method_class names none allowed Java classes

This property needs to be set with the names (including wildcards) of Java classes that can be used for routines
based on Java static methods. See the SQL Invoked Routines chapter.

285

HyperS@L

Chapter 14. HyperSQL Network Listeners
(Servers)

Server, WebServer, and Servlet

Fred Toussi, The HSQL Development Group
$Revision: 6094 $

Copyright 2002-2020 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.

2020-06-29

Listeners

Asdescribedinthe Runningand Using HyperSQL chapter, network listeners (servers) provide connectivity to catalogs
from different VM processes. The HyperSQL listeners support both ipv4 and ipv6 network addressing.

HyperSQL Server

This is the preferred way of running a database server and the fastest one. This mode uses the proprietary hsgl:
communications protocol. The following example of the command for starting the server starts the server with one
(default) database with files named "mydb.*" and the public name (alias) of "xdb". Note the database property to set
the transaction mode to MV CC is appended to the database file path.

java -cp ../lib/hsqgldb.jar org. hsql db. server. Server --database.0 file:nydb; hsqgl db.tx=nvcc --
dbnane. 0 xdb

Alternatively, aser ver. properti es file can be used for passing the arguments to the server. This file must be
located in the directory where the command is issued.

‘ java -cp ../lib/hsqgldb.jar org.hsqgl db. server. Server ‘

Alternatively, you can specify the path of the ser ver. properti es file on the command line. In this case, the
properties file can have any name or extension, but it should be avalid propertiesfile.

‘ java -cp ../lib/hsqgldb.jar org.hsql db. server. Server --props myserver. props ‘

Use the --help argument to see the list of available arguments.

‘ java -cp ../lib/hsqgldb.jar org.hsqgl db. server. Server --help ‘

The contents of theser ver . properti es fileisdescribed in the next section.

HyperSQL HTTP Server

This method of access is used when the computer hosting the database server is restricted to the HTTP protocol. The
only reason for using this method of accessis restrictions imposed by firewalls on the client or server machines and it
should not be used wherethere are no such restrictions. The HyperSQL HTTP Server isaspecial web server that allows
JDBC clientsto connect viaHTTP. The server can also act as a small general-purpose web server for static pages.

286

HyperS@L

HyperSQL Network Listeners
(Servers)

Torunan HTTP server, replace the main class for the server in the example command line above with the following:

‘ java -cp ../lib/hsqgldb.jar org. hsqgl db. server. WbServer

The contents of theser ver . properti es fileisdescribed in the next section.

HyperSQL HTTP Servlet

This method of access also usesthe HTTP protocal. It is used when a separate servlet engine (or application server)
such as Tomcat or Resin provides access to the database. The Servlet Mode cannot be started independently from the
servlet engine. The Ser vl et class, in the HSQLDB jar, should be installed on the application server to provide the
connection. The database is specified using an application server property. Refer to the source file src/ or g/

hsql db/ server/ Servl et.java toseethedetails.

Both HTTP Server and Servlet modes can only be accessed using the JDBC driver at the client end. They do not
provide aweb front end to the database. The Servlet mode can serve only a single database.

Please note that you do not normally use this mode if you are using the database engine in an application server. In
this situation, connections to a catalog are usually made in-process, or using an external HSQL Server instance.

Server and Web Server Properties

Properties files for running the servers are not created automatically. Y ou should create your own files that contain
server.property=val ue pairsfor each property. Theser ver. properti es orwebserver. properti es files
must be located in the directory where the command to runthe or g. hsql db. server. Server classisissued.

Inal propertiesfiles, values are case-sensitive. All values apart from names of files or pages are required in lowercase
(e.g. server.silent=FALSE will have no effect, but server.silent=f al se will work). Supported properties and their

default values (if any) are asfollows:

Table 14.1. common server and webserver properties

Value Default Description

server.database.0 file:test the catalog type, path and file name of the first database
fileto use

server.dbname.O " lowercase server dias for the first database file

server.database.n NO DEFAULT the catalog type, path and file name of the n'th database
filein use

server.dbname.n NO DEFAULT lowercase server alias for the n'th database file

server.silent true no extensive messages displayed on console

server.trace fal se JDBC trace messages displayed on console

server.address NO DEFAULT | P address of server

server.tls fal se Whether to encrypt network stream. If thisis set to
t r ue, thenin normal situations you will also need to set
propertiessyst em j avax. net . ssl . keySt or e and
system j avax. net. ssl . keySt or ePassword,
as documented elsewhere. Thevalue of server.tl s
impacts the default value of ser ver. port .

server.daemon fal se Whether the server isrun as a daemon

287

HyperS@L HyperSQL Network Listeners

(Servers)
Value Default Description
server.remote_open fal se Allows opening a database path remotely when the first
connection is made

In HyperSQL version 2.0, each server can serve an unlimited number of databases simultaneously. The
server.database.O property defines the filename / path whereas the server.dbname.O defines the lowercase alias used
by clients to connect to that database. The digit O is incremented for the second database and so on. Values for
the server.database.n property can use the mem:, file: or res: prefixes and connection properties as discussed under
CONNECTIONS. For example,

‘ dat abase. O=mrem t enp; sql . enforce_strict_si ze=true; ‘

Properties or default values specificto ser ver . properti es are

Table 14.2. server properties

Value Default Description
server.port 9001 (nornal) TCP/IP port used for talking to clients. All databases are
or 554 (if TLS served on the same port.

encrypt ed)

server.no_system_exit true no Syst em exi t () call when the database is closed

Properties or default values specific towebser ver . properti es are

Table 14.3. webser ver properties

Value Default Description
server.port 80 (normal) or 443|TCP/IP port used for talking to clients
(if TLS encrypted)

server.default_page i ndex. htm the default web page for server

server.root N the location of served pages

.<extension> NO DEFAULT multiple entriessuch as. ht ml =t ext / ht Ml define the
mime types of the static files served by the web server.
Seethesourcefor src/org/ hsql db/ server/
WebServer.java foralist.

An example of the contents of aser ver . properti es fileisgiven below:

server. dat abase. O=fil e:/opt/db/accounts
server. dbnanme. O=account s

server. dat abase. 1=fil e:/opt/db/ mydb
server. dbnane. 1=enr ol nent s

server. dat abase. 2=nem adat abase
server. dbnanme. 2=qui ckdb

In the above example, the server. properti es file indicates that the server provides access to 3 different
databases. Two of the databases are file based, while the third is all in memory. The aliases for the databases that the
users connect to areaccount s, enr ol ment s and qui ckdb.

All the above properties and their values can be specified on the command line to start the server by omitting the
server. prefix. If aproperty/value pair is specified on the command line, it overrides the property value specified
intheserver. properties orwebserver. properti es file

288

HyperS@L HyperSQL Network Listeners
(Servers)

Note

Upgrading: If you have existing custom propertiesfiles, change the val uesto the new naming convention.
Note the use of digits at the end of server.database.n and server.dbname.n properties.

Starting a Server from your Application

If you want to start the server from within your application, as opposed to the command line or batch files, you should
create an instance of Server or Web Server, then assign the properties and start the Server. An working example of
thiscanbefoundinthe org. hsql db. t est. Test Base source. The example below sets the same properties
asintheserver. properti es fileexample.

Hsql Properties p = new Hsql Properties();

p. set Property("server. dat abase. 0", "fil e:/opt/db/accounts");
p. set Property("server.dbnane. 0", "an_al i as");

/] set up the rest of properties

/] alternative to the above is

Server server = new Server();

server.set Properties(p);

server.setLogWiter(null); // can use customwiter
server.setErrWiter(null); // can use customwiter
server.start();

Shutting down a Server from your Application

To shut down the server, you can execute the SQL "SHUTDOWN" statement on the server databases.
When you start the server from your application and keep a reference to the Java Server object, you can
also shut it down programaticaly. Caling the shut downCat al ogs(i nt shut downMbde) method of
org. hsql db. server. Server closes al the open databases, which results in server shtudown. The parameter
value is normally 1, which indicates norma shutdown. Other modes of shutdown, such as SHUTDOWN
IMMEDIATELY arealso supported. Seethejavadocfor or g. hsql db. server. Ser ver . Seethe example below:

‘ server . shut downCat al ogs(1) ; ‘

The Server object has severa aternative methods for setting databases and their public names. The server should be
shutdown using the shutdown() method.

Allowing a Connection to Open or Create a Database

If theser ver. renot e_open property is true, the Server works differently from the norma mode. In this mode,
it is not necessary to have any databases listed as server.database.O etc. in the Server startup properties. If there are
databases listed, they are opened as normal. The server does not shutdown when the last database is closed.

In this mode, a connection can be established to a database that is not open or does not exist. The server will open the
database or create it, then return a connection to the database.

The connection URL must include the path to the database, separated with a semicolon from the alias. In the example
below, the database path specified asfil e: C./fil es/ nydat abase is opened and the database alias xdb is
assigned to the database. After this, the next connection to the specified alias will connect to the same database. Any
database path on the URL isignored if the alias is serving a database.

The database path can point to afile: or mem: database.

If you use database properties on the URL, these properties are used when the new database is created. If no database
properties are used on the URL, you can also specify the path with f i | epat h=<pat h>. Examples below:

289

HyperS@L HyperSQL Network Listeners

(Servers)
Connection ¢ = Dri verNhnager get Connection("j dbc: hsqgl db: hsqgl : //1 ocal host/xdb;file:C/files/
nydat abase", "SA', "");
Connection ¢ = DriverManager. get Connecti on(" jdbC hsql db: hsql : / /1 ocal host/
xdb; mem test; sql . enforce_types=true", "SA', "");

Connection ¢ = Dri verNhnager gethnnectlon(jdbc: hsql db: hsql : //1 ocal host/ xdb; fil epath=file:C:/
fil es/ nydat abase", "SA", "");

Specifying Database Properties at Server Start

Each database started by a Server has its own URL. When new databases are created by the server, the database
properties for each of the new database can be appended to the database URL . Examples below:

/'l exanple in server.propertie file
server. dat abase. 0=fil e:/ opt/db/ accounts; hsql db. def aul t _t abl e_t ype=cached; sql . enf or ce_nanes=true
server. dbnanme. O=account s

/| exanple for setting the property programatically
Hsql Properties p = new Hsql Properties()
p. set Property("server. dat abase. 0", "fil e:/opt/db/
account s; hsqgl db. def aul t _t abl e_t ype=cached; sql . enf or ce_nanes=true")

The specified properties apply only to a new database. They have no effect on an existing database apart from afew
properties such asr eadonl y listed in the Properties chapter.

TLS Encryption

Listener TLS Support (a. k. a. SSL)

Blaine Simpson, The HSQL Development Group
$Revision: 6094 $
2020-06-29

This section explains how to encrypt the stream between JDBC network clients and HyperSQL Listeners. If you are
running an in-process (non-Listener) setup, this chapter does not apply to you.

Requirements

Hsgldb TL'S Support Requirements
» Java4 and greater versions support JSSE.
* A JKSkeystore containing a private key , in order to run a Listener.

« If you are running the listener side, then you'll need to run aHSQLDB Server or WebServer Listener instance. It
doesn't matter if the underlying database catalogs are new, and it doesn't matter if you are making a new Listener
configuration or encrypting an existing Listener configuration. (Y ou can turn encryption on and off at will).

* Youneed aHSQLDB jar file that was built with JSSE present. If you obtained your HSQL DB distribution from us,
you are all set, because we build with Java 1.4 or later (which contains JSSE).

Encrypting your JDBC connection

At thistime, only 1-way, server-cert encryption is tested.
Client-Side

Just use one of the following protocol prefixes.

290

HyperS@L HyperSQL Network Listeners
(Servers)

Hsgldb TLS URL Prefixes

» jdbc: hsqgl db: hsql s://

e jdbc: hsql db: https://

The latter will only work for clients running with Java 1.4 or later.

If the listener you wish to connect to is using a certificate approved by your default trust keystore, then there is nothing
else to do. If not, then you need to tell Java to "trust” the server cert. (It's a slight over-simplification to say that if
the server certificate was purchased, then you are all set; if somebody "signed their own" certificate by self-signing
or using a private ca certificate, then you need to set up trust).

First, you need to obtain the cert (only the "public" part of it). Since this cert is passed to all clients, you could obtain
it by writing a Java client that dumpsiit to file, or perhaps by using opensd s client. Sincein most cases, if you want
to trust a non-commercial cert, you probably have access to the server keystore, I'll show an example of how to get

what you need from the server-side JKS keystore.

You may already have an X509 cert for your server. If you have a server keystore, then you can generate a X509
cert like this.

Example 14.1. Exporting certificate from the server's keystore

‘ keyt ool -export -keystore server.store -alias existing_alias -file server.cer

Inthisexample, ser ver . cer isthe X509 certificate that you need for the next step.

Now, you need to add this cert to one of the system trust keystores or to a keystore of your own. See the
Customizing Stores section in JISSERef Guide.html [http://java.sun.com/javase/6/docs/technotes/gui des/security/jsse/
JSSERef Guide.html#CustomizingStores] to see where your system trust keystores are. Y ou can put private keystores
anywhere you want to. The following command will add the cert to an existing keystore, or create a new keystore if
client. store doesn't exist.

Example 14.2. Adding a certificateto the client keystore

‘ keytool -inport -trustcacerts -keystore trust.store -alias new alias -file server.cer ‘

If you are making a new keystore, you probably want to start with a copy of your system default keystore which you
can find somewhere under your JAVA HOVE directory (typicallyj re/li b/ security/cacert s foraJDK, but
| forget exactly whereit isfor a JRE).

Unless your OS can't stop other people from writing to your files, you probably do not want to set a password on
the trust keystore.

If you added the cert to a system trust store, then you are finished. Otherwise you will need to specify your

custom trust keystore to your client program. The generic way to set the trust keystore is to set the system property
j avax. net. ssl . trust St or e every timethat you run your client program. For example

Example 14.3. Specifying your own trust storeto a JDBC client

‘ java -Dj avax.net.ssl.trustStore=/home/ bl aine/trust.store -jar /path/to/hsqgldb.jar dest-urlid

This example runs the program SglTool . SgiTool has built-in TLS support however, so, for SglTool you can set
t rust st or e on aper-urlid basisin the SglTool configuration file.

291

http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores

HyperS@L HyperSQL Network Listeners
(Servers)

Note: The hostname in your database URL must match the Common Name of the server's certificate exactly.
That means that if a site certificate is adnt. com you cannot use j dbc: hsql db: hsql s:// 1 ocal host or
j dbc: hsql db: hsql s: //ww. adnt. com 1100 to connect to it.

If you want more details on anything, see JSSERefGuide.html on Sun's site [http://java.sun.com/javase/6/
docs/technotes/guides/security/jsse/ ISSERefGuide.html], or in the subdirectory docs/ gui de/ security/j sse
of your Java SE docs.

Server-Side (Listener-Side)

Get yoursef a JKS keystore containing a private key . Then set properties server.tls,
system javax. net.ssl.keyStore and system javax. net.ssl.keyStorePassword in your
server.properties or webserver.properties file Set server.tls to true,
system javax. net.ssl.keyStore to the pah of the private key JS keystore, and
system j avax. net. ssl . keySt or ePasswor d to the password (of both the keystore and the private key
record-- they must be the same). If you specify relative file path values, they will be resolved relative to the
${ user. di r} whenthe JRE is started.

A Caution

If you set any password in a .properties (or any other) file, you need to restrict access to the file. On a
good operating system, you can do this like so:

chnod 600 path/to/server. properties

The values and behavior of the system* settings above match the usage documented for
j avax. net. ssl . keySt or ePasswor d andj avax. net. ssl . keySt or e in the JSSE docs.

Note

Before version 2.0, HyperSQL depended on directly setting the corresponding JSSE properties. The new
idiom is more secure and easier to manage. If you have an old password in a UNIX init script config
file, you should remove it.

Making a Private-key Keystore

There are two main ways to do this. Either you can use a certificate signed by a certificate authority, or you can make
your own. Onething that you need to know in both casesis, the Common Name of the cert hasto be the exact hostname
that JDBC clients will usein their database URL.

CA-Signed Cert

I'm not going to tell you how to get a CA-signed SSL certificate. That is well documented at many other places.

Assuming that you have a standard pem-style private key certificate, here's how you can use openssl [http:/
www.openssl.org] and the program DERI npor t to get it into a JKS keystore.

Because | have spent alot of time on this document already, | am just giving you an example.

Example 14.4. Getting a pem-style private key into a JKSkeystore

openssl pkcs8 -topk8 -outform DER -in Xpvk.pem -inform PEM -out Xpvk. pk8 -nocrypt

292

http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://www.openssl.org
http://www.openssl.org
http://www.openssl.org

HyperS@L HyperSQL Network Listeners
(Servers)

openssl x509 -in Xcert.pem -out Xcert.der -outform DER

java DERI nmport new. keystore NEWALI AS Xpvk. pk8 Xcert. der

I mportant
!

Make sure to set the password of the key exactly the same as the password for the keystore!

You need the program DERI nport . cl ass of course. Do some internet searches to find DERI nport . j ava or
DERI mport . cl ass and download it.

If DERImport has become difficult to obtain, | can write a program to do the same thing-- just let me know.

Non-CA-Signed Cert

Runman keyt ool or see the Creating a Keystore section of JSSERefGuide.html [http://java.sun.com/javase/6/
docs/technotes/guides/security/j sse/ ISSERef Guide.html#CreateK eystore] .

Automatic Server or WebServer startup on UNIX

If you are on UNIX and want to automatically start and stop a Server or WebServer running with encryption, set the
system j avax. net.ssl . keySt ore andsyst em j avax. net. ssl . keySt or ePasswor d properties as
instructed above, and follow the instructionsin the HyperSQL on UNIX chapter, paying close atentionto the TLS-
related comments in the template config file.

If you are using a private server certificate, make sure to also set the trust store filepath for relevant urlidsin your RC
file, as explained in the sample configfile.

Network Access Control
(Server ACLSs)

JDBC connections will always be denied if the supplied user and password are not found in the target catalog. But an
HyperSQL listener can also restrict access at the listener level, even protecting private catalogs which have insecure
(or default) passwords. If you have an in-process setup, this section of the Guide doesn't apply to you.

Many (in fact, most) distributed database applications don't have application clients connect directly to the database,
but instead encapsulate access in a controlling process. For example, a web app will usually access the data source
on behalf of users, with end-user web browsers never accessing the database directly. In these cases and others, the
security benefits of restricting listener access to specific source addresses is well worth the effort. ACLs work by
restricting access according to the source address of the incoming connection request. This is efficient because the
database engine never even gets the request until it is approved by the ACL filter code.

Thesamplefile sanpl e/ acl . t xt inyour HyperSQL distribution explains how to write an ACL file.

$1d: acl.txt 536 2008-12-05 14:55:10Z unsaved $

Sanpl e Hyper SQL Network Listener ACL file.

Specify "allow' and "deny" rul es

For address specifications, individual addresses, host nanes, and
network addresses with /bit suffix are allowed, but read the caveat about
host nanes bel ow, under the sanple "local host" rule.

HH O HH

HH*

Bl ank |ines ignored.
Lines with # as the first non-whitespace character are ignored.

al | ow 2001: db8::/32

293

http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CreateKeystore
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CreateKeystore
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CreateKeystore

HyperS@L HyperSQL Network Listeners
(Servers)

Allow this 32-bit ipv4 subnet

al | ow | ocal host

You shoul d use nunerical addresses in ACL files, unless you are certain that
the name will always be known to your network address resol uti on system

(assune that you will lose Internet connectivity at some tine)

Wth a default nane resolution setup on UNI X, you are safe to use names

defined in your /etc/hosts file.

deny 192.168. 101. 253

Deny a single | P address

In our exanple, 192.168.101.0/24 is our |local, organizational network.
192.168.101. 253 is the | P address of our Intern's PC.

The Intern does not have perm ssion to access our databases directly.

al |l ow 192. 168. 101. 0/ 24

Any ipv4 or ipv6 candi date address not matched above will be denied

You put your file wherever it is convenient for you, and specify that path with the property server. acl or
webserver. acl inyour server. properties or webserver. properti es file (depending on whether
your listener instanceisa Ser ver or WebSer ver). You can specify the ACL file path with an absolute or relative
path. If you use arélative path, it must be relativeto the. pr oper ti es file. It's often convenient to name the ACL
fileacl . t xt, in the same directory asyour . pr operti es file and specify the property value asjust acl . t xt .
Thisfile name isintuitive, and things will continue to work as expected if you move or copy the entire directory.

. Warning

If your Ser ver or WebSer ver was started with a*. acl property, changes afterwards to the ACL
filewill be picked up immediately by your listener instance. Y ou are advised to use the procedure below
to prevent partial edits or mistakes from crippling your running server.

When you edit your ACL file, it is both more convenient and more secure to test it as explained here before activating
it. You could, of course, test an ACL file by editing it in-place, then trying to connect to your listener with JDBC
clients from various source addresses. Besides being mightily laborious and boring, with thismethod it is very easy to
accidentally open access to all source addresses or to deny accessto all users until you fix incorrect ACL entries.

The suggested method of creating or changing ACLs is to work with an inactive file (for new ACL files, just don't
enablethe*. acl property yet; for changing an existing file, just copy it to atemporary file and edit the temporary
file). Then usethe Ser ver Acl classto test it.

Example 14.5. Validating and Testing an ACL file

‘ java -cp path/to/ hsqgldb.jar org.hsqgl db. server. Server Acl path/to/acl.txt ‘

If the specified ACL file fails validation, you will be given details about the problem. Otherwise, the validated rules
will be displayed (including the implicit, default deny rules). Y ou then type in host names and addresses, one-per-line.
Each name or addressistested asif it were a HyperSQL network client address, using the same exact method that the
HyperSQL listener will use. (HyperSQL listenersusethissame Ser ver Acl classto test incoming source addresses).
Server Acl will report the rule which matches and whether access is denied or allowed to that address.

If you have edited a copy of an existing ACL file (as suggested above), then overwrite your live ACL file with your
new, validated ACL file. I.e., copy your temp file over top of your live ACL file.

Server Acl can berunin the same exact way described above, to troubleshoot runtime access issues. If you use an
ACL file and a user or application can't get a connection to the database, you can run Ser ver Acl to quickly and
definitively find if the client is being prohibited by an ACL rule.

294

HyperS@L

Chapter 15. HyperSQL on UNIX

How to quickly get a HyperSQL Listener up and running on UNIX,
including Mac OS X

Blaine Simpson, The HSQL Development Group

$Revision: 5999 $
2020-06-29

Purpose

This chapter explains how to quickly install, run, and use a HyperSQL Listener (aka Server) on UNIX.

Notethat, unlike atraditional database server, there are many use cases where it makes sense to run HyperSQL without
any listener. This type of setup is called in-process, and is not covered here, since there is no UNIX-specific setup
in that case.

| intend to cover what | think isthe most common UNIX setup: To run amulti-user, externally-accessible catalog with
permanent data persistence. (By the latter | mean that datais stored to disk so that the catalog data will persist across
process shutdowns and startups). | a'so cover how to run the Listener as a system daemon.

When | give sample shell commands below, | use commands which will work in Bourne-compatible shells, including
Bash and Korn. Users who insist on using the inferior C-shells will need to convert.

Installation

Goto http://sourceforge.net/projectshsgldb and click on the "files" link. Y ou want the current version. | can't be
more specific because SourceForge/ Geeknet are likely to continue changing their interface. Seeif there'sadistribution
for the current HSQL DB version in the format that you want.

If youwant abinary package and weeither don't provideit, or you prefer somebody else'sbuild, you should still find out
the current version of HyperSQL available at SourceForge. It'svery likely that you can find a binary package for your
UNIX variant with your OS distributor, http://www.jpackage.org/ , http://sunfreeware.com/ , etc. Nowadays, most
UNIXes have software package management systemswhich check Internet repositories. Just search the repositoriesfor
"hsgldb" and "hypersqgl". The challengeisto find an up-to-date package. Y ou will get better features and support if you
work with the current stable rel ease of HyperSQL. (In particular, HyperSQL version 2.0.0 added tons of new features).
Pay attention to what VM versions your binary package supports. Our builds (version 2.0 and later) document the
Javaversionit wasbuilt withinthefiledoc/ i ndex. ht m , but you can't depend on thisif somebody €l se assembled
your distribution. Java jar files are generally compatible with the same or greater major versions. For example,if your
hsql db. j ar wasbuilt with Java 6, then it is compatible with Java versions 6 and greater.

Note

It could very well happen that some of the file formats which | discuss below are not in fact offered. If
s0, then we have not gotten around to building them.

Binary installation depends on the package format that you downl oaded.

Installing from a.pkg.Z file This package is only for use by a Solaris super-user. It's a System V package.
Download then uncompress the package with uncompress or gunzip

‘ unconpress fil enane. pkg. Z

295

http://sourceforge.net/projects/hsqldb
http://www.jpackage.org/
http://sunfreeware.com/

HyperS@L HyperSQL on UNIX

Y ou can read about the package by running

‘pkginfo-l -d filenane. pkg ‘

Run pkgadd as root to install.

‘ pkgadd -d fil enane. pkg ‘

Installing from a BSD Port or You're on your own. | find everything much easier when | install software to
Package BSD without their package management systems.
Installing from a.rpmfile Just skip this section if you know how to install an RPM. If you found the RPM

using a software management system, then just haveit install it. The remainder
of item explains a generic command-line method which should work with any
Linux variant. After you download the rpm, you can read about it by running

‘rpm-qip/path/to/file.rpm ‘

Rpms can be installed or upgraded by running

‘rpm—th/path/to/fiIe.rpm ‘

as root. Suse users may want to keep Yast aware of installed packages by
running rpm through Yast: yast2 -i /path/to/file.rpm

Installing from a.zipfile Extract the zip file in an ancestor directory of the new HSQLDB home. You
don't need to create the HSQLDB_HOVE directory because the extraction will
createaversion-labelled directory, and the subdirectory "hsgldb”. This"hsgldb"
directory is your HSQLDB_HOVE, and you can move it to wherever you wish.
If you will be upgrading or maintaining multiple versions of HyperSQL, you
will want to retain the version number in the directory tree somehow.

cd ancestor/ of / new hsql db/ hone
unzip /path/to/file.zip

All thefilesinthe zip archivewill be extracted to underneath anew subdirectory
named like hsql db- 2. 4. 1/ hsql db.

Take a look at the files you installed. (Under hsql db for zip file installations. Otherwise, use the utilities for
your packaging system). The most important file of the HyperSQL system is hsql db. j ar, which resides in the
subdirectory | i b. Depending on who built your distribution, your file name may have a version label in it, like
hsqgl db-1.2.3.4.jar.

=" I mportant
!

- For the purposes of thischapter, | define HSQLDB_HOVE to be the parent directory of thelib directory that
containshsql db. j ar . E.g., if your pathto hsql db. j ar is/ a/ b/ hsql db/ i b/ hsql db. j ar,
then your HSQLDB HOME is/ a/ b/ hsql db.

Furthermore, unless| state otherwise, all local file pathsthat | give are relative to the HSQLDB_HOVE.

If the description of your distribution says that the hsql db. j ar file will work for your Java version, then you are
finished with installation. Otherwise you need to build anew hsql db. j ar file.

If you followed the instructions above and you still don't know what Java version your hsql db. j ar supports, then
try reading documentation filesliker eadme. t xt , READVE. TXT, | NSTALL. t xt etc. (As| said above, our newer

296

HyperS@L HyperSQL on UNIX

distributions always document the Javaversion for the build, inthefiledoc/ i ndex. ht nl). If that still doesn't help,
then you can just try your hsql db. j ar and seeif it works, or build your own.

To use the supplied hsql db. j ar, just skip to the next section of this document . Otherwise build a new
hsqgl db. j ar.

Procedure 15.1. Building hsgldb.jar

1. If youdon't already have Ant, download the latest stable binary version from http://ant.apache.org . cd to where
you want Ant to live, and extract from the archive with

| unzip /path/tol/file.zip |

or

‘tar -xzf /path/to/file.tar.gz ‘

or

‘bunzip2—c/path/to/file.tar.bzz| tar -xzf - ‘

Everything will be installed into anew subdirectory named apache- ant - + ver si on. You can rename the
directory after the extraction if you wish.

2. Set the environmental variable JAVA HOVE to the base directory of your Java JRE or SDK, like

| export JAVA_HOME; JAVA_HOME=/usr/j avalj 2sdk1. 4.0 |

The location is entirely dependent upon your variety of UNIX. Sun's rpm distributions of Java normally install
to/usr/javal sonet hi ng. Sun's System V package distributions of Java (including those that come with
Solaris) normally install to / usr/ somret hi ng, with asym-link from / usr/ j ava to the default version (so
for Solaris you will usualy set JAVA_HOME to/ usr/ j ava).

3. Removetheexisting file HSQLDB _HOVE/ | i b/ hsql db. j ar.

4. cdto HSQLDB_HOVE / bui | d. Make sure that the bin directory under your Ant home is in your search path.
Run the following command.

\ ant hsql db \

Thiswill build anew HSQLDB_HOME/ | i b/ hsql db. j ar.

See the Building HSQLDB Jars appendix if you want to build anything other than hsql db. j ar with all default
settings.

Setting up a HyperSQL Persistent Database Catalog
and a HyperSQL Network Listener

If you installed from an OS-specific package, you may aready have a catalog and listener pre-configured. See if
your packageincludesafilenamed ser ver . properti es (make use of your packaging utilities). If you do, then |
suggest that you still read this section while you poke around, in order to understand your setup.

1. Select aUNIX user to run the database process (VM) as. If this database is for the use of multiple users, or isa
production system (or to emulate a production system), you should dedicate a UNIX user for this purpose. In my
examples, | use the user name hsql db. In this chapter, | refer to this user as the HSQLDB OANER, since that
user will own the database catal og files and the VM processes.

297

http://ant.apache.org

HyperS@L HyperSQL on UNIX

If the account doesn't exist, then create it. On all system-5 UNIXes and most hybrids (including Linux), you can
run (asroot) something like

‘ useradd -c ' HSQLDB Dat abase Oaner' -s /hin/bash -m hsql db ‘

(BSD-variant users can useasimilar pw user add hsql db. .. command).

2. Become the HSQLDB OWNER. Copy the sample file sanpl e/ server. properties to
the HSQLDB_OWNER's home directory and rename it to server. properties. (As a fina reminder,
"sampleserver.properties’ is arelative path, so it is understood to be relative to your HSQLDB _HOVE).

Hsql db Server cfg file.
See the Hyper SQL Network Listeners chapter of the Hyper SQL User Guide.

FraETS

Each server. dat abase. X setting defines a database "catal og".

1.e., an independent set of data.

Each server. dat abase. X setting corresponds exactly to the jdbc: hsql db: *
JDBC URL you would use if you wanted to get a direct (In-Process)

Connection to the catalog instead of "serving" it.

server. dat abase. O=fi | e: db0/ dbO

| suggest that, for every file: catalog you define, you add the

connection property "ifexists=true" after the database instance

is created (which happens sinply by starting the Server one tine).
Just append ";ifexists=true" to the file: URL, like so:

server. dat abase. 0=fi | e: dbO/ db0; i f exi st s=true

server.dbnane.0 defaults to "" (i.e. server.dbnane.n for n==0), but

the catalog definition n will be entirely ignored for n > 0 if you do not
set server.dbnane.n. |.e. dbnane setting is required for n > 0, though it
may be set to blank (e.g. "server.dbnane. 3=")

Since the value of the first database (server.database.0) begins with file:, the catalog will be persisted to a set
of files in the specified directory with names beginning with the specified name. Set the path to whatever you
want (relative paths will be relative to the directory containing the properties file). Y ou can read about how to
specify other catalogs of various types, and how to make settings for the listen port and many other things in
other chapters of this guide.

3. Set and export the environmental variable CLASSPATH to the value of HSQLDB_HOME (as described above)
plus“/lib/hsgldb.jar”, like

| export CLASSPATH, CLASSPATH=/ pat h/tol hsql db/1i b/ hsgl db. j ar |

In HSQLDB_OWNER's home directory, run

‘ nohup java org. hsql db. server. Server & ‘

Thiswill start the Listener processin the background, and will create your new database catalog "db0". Continue
on when you see the message containing HSQLDB server... is online.nohup just makes surethat the
command will not quit when you exit the current shell (omit it if that's what you want to do).

Accessing your Database

WEe're going to use SqlTool to access the database, so you will need the file sql t ool . j ar in addition to
hsql db.j ar.If sql t ool . j ar isn't aready sitting there beside hsql db. j ar (they both come pre-built), build
it exactly asyou would build hsql db. j ar, except use ant target sql t ool . If your distribution came with a sgltool
jar filewithaversionlabel, likesql t ool - 1. 2. 3. 4. j ar, that'sfine-- usethat filewhenever | say sql t ool . j ar
below.

298

HyperS@L HyperSQL on UNIX

Copy the file sanpl e/ sqltool .rc tothe HSQLDB_ OWNER's home directory. Use chnod to make the file
readable and writable only to HSQLDB_ OANER.

$1d: sqgltool.rc 5935 2019-01-27 23: 44:28Z unsaved $

This is a sanple RC configuration file used by Sql Tool, DatabaseManager,
and any other programthat uses the org.hsqldb.lib. RCData cl ass.
See the docunentation for Sgl Tool for various ways to use this file.

If you have the | east concerns about security, then secure access to
your RC file.

#* F#*

You can run Sqgl Tool right now by copying this file to your hone directory
and running

java -jar /path/to/sqgltool.jar nem
This will access the first urlid definition belowin order to use a
personal Menory-Only dat abase.
"url" val ues may, of course, contain JDBC connection properties, delimnted
wi th senicol ons.
As of revision 3347 of SglFile, you can al so connect to datasources defined
here fromwithin an Sgl Tool session/file with the conmand "\j urlid".

HHHHHHHHH

HH*

You can use Java system property values in this file like this: ${user.hone}

W ndows users are advised to use forward sl ashes instead of back-slashes,
and to avoi d paths containing spaces or other funny characters. (This
recommendati on applies to any Java app, not just Sql Tool).

H* H H*

1t is aruntime error to do a urlid | ookup using RCData class and to not

match any stanza (via urlid pattern) in this file.

Three features added recently. Al are downward-conpati bl e.

1. urlid field values in this file are now conma-separated (w th optional

whi t espace before or after the conmas) regul ar expressions.

2. Each individual urlid token value (per previous bullet) is a now a regul ar
expression pattern that urlid | ookups are conpared to. N b. patterns mnust
match the entire | ookup string, not just match "within" it. E. g. pattern
of . would match | ookup candidate "A" but not "AB". .+ will always match.
3. Though it is still an error to define the same exact urlid val ue nore

than once in this file, it is allowed (and useful) to have a url | ookup

match nore than one urlid pattern and stanza. Assignments are applied

sequentially, so you should generally add default settings with nore

liberal patterns, and override settings later in the file with nore

specific (or exact) patterns.

dobal default. .+ matches all | ookups:

urlid .+

user name SA

passwor d

A personal Menory-Only (non-persistent) database.

Inherits username and password from default setting above.
urlid mem

url jdbc: hsql db: mem mendbi d

A personal, local, persistent database.

Inherits username and password from default setting above.

urlid personal

url jdbc: hsqgldb: file:${user. hone}/db/ personal ; shut down=true

transi so TRANSACTI ON_READ COW TTED

When connecting directly to a file database like this, you should
use the shutdown connection property like this to shut down the DB
properly when you exit the JVM

This is for a hsqldb Server running with default settings on your |ocal
conmputer (and for which you have not changed the password for "SA").
Inherits username and password from default setting above.

299

HyperS@L HyperSQL on UNIX

urlid | ocal host-sa
url jdbc: hsql db: hsql : //1 ocal host

Tenplate for a urlid for an Oracl e dat abase.
You will need to put the oracle.jdbc. OracleDriver class into your
cl asspat h.

In the great majority of cases, you want to use jhe desired version of a
file odbc*.jar (previously JDBC distributed as classesl2. zi p),

whi ch you can get fromthe directory $ORACLE HOME/ jdbc/lib of any

Oracle installation conpatible with your server.

Since you need to add to the classpath, you can't invoke Sgl Tool wth

the jar switch, like "java -jar .../sqgltool.jar...".

Put both the Sgl Tool jar and odbc*.jar in your classpath (and export!)

and run sonething like "java org. hsqgldb.util.Sql Tool ...".

You coul d use the thick driver instead of the thin, but | know of no reason
why any Java app shoul d.

HHHHHHHHHHHHH

#urlid cardiff2

#url jdbc:oracle:thin: @egir.adnc. com 1521: TRAFFI C_SI D

Thin SID URLs nust specify both port and SID, there are no defaults.

Oracle listens to 1521 by default, so that's what you will usually specify.
But can alternatively use global service nane (not tnsnanes.ora service

alias, in which case the port does default to 1521):

#url jdbc:oracle:thin: @entos. adnt. com t stsid. adnc

#user nane bl ai ne

#password secret password

#driver oracle.jdbc. OracleDriver

Tenplate for a TLS-encrypted HSQLDB Server.

Remenber that the hostnane in hsgls (and https) JDBC URLs must match the
CN of the server certificate (the port and instance alias that follows
are not part of the certificate at all).

You only need to set "truststore" if the server cert is not approved by
your systemdefault truststore (which a comercial certificate probably
woul d be).

#urlid tls

#url jdbc: hsql db: hsql s://db. adnc. com 9001/ | n2
#user nanme BLAI NE
#password asecr et
#truststore ${user. hone}/cal/ db/db-trust.store

Tenpl ate for a Postgresql database

#urlid bl ai nedb

#url jdbc: postgresql://idun.africawork. org/bl ai nedb
#user nane bl ai ne

#password | osungl

#driver org.postgresql.Driver

Tenplate for a M/SQL dat abase. MSQL has poor JDBC support.
#urlid nysql-testdb

#url jdbc: nmysql://hostname: 3306/ dbnane

#user nane r oot

#password hi ddenpwd

#driver com nysql.jdbc. Driver

Note that "databases" in SQ Server and Sybase are traditionally used for
the same purpose as "schemas" with nmore SQL-conpliant databases.

Tenplate for a Mcrosoft SQ Server database using Mcrosoft's Driver
(I find that the JTDS driver is nmuch nore responsive than Mcrosoft's).
Port defaults to 1433.

300

HyperS@L HyperSQL on UNIX

MSDN inplies instances are port-specific, so can specify port or instnane
#urlid nsprojsvr

url/driver for Current 2011 JDBC Driver for Mcrosoft SQ. Server

Requires just the new sqljdbc4.jar. (Mcrosoft just |oves back-sl ashes)
#url jdbc:sql server://hostnanme\i nst name; dat abaseName=dbnane

OR

#url jdbc:sql server://hostname; i nstanceNanme=i nst name; dat abaseName=dbnane
#driver com microsoft.jdbc. sql server. SQLServerDriver

See, for exanple,

https://docs. mcrosoft.conl en-us/sqgl/connect/jdbc/buil di ng-the-connection-url ?vi ew=sql -
server-2017

url/deriver for OLDER JDBC Driver

#url jdbc: m crosoft:sql server://host nane; Dat abaseNanme=DbNane; Sel ect Met hod=Cur sor
The Sel ect Method setting is required to do nore than one thing on a JDBC
session (I guess Mcrosoft thought nobody would really use Java for
anything other than a "hello world" program

This is for Mcrosoft's SQL Server 2000 driver (requires mssql server.jar
and nsutil.jar).

#driver com microsoft.jdbc. sqgl server. SQLServerDriver

#user name nyuser

#password hi ddenpwd

HH O HH

Tenpl ate for Mcrosoft SQ Server database using the JTDS Driver

http://jtds.sourceforge.net Jar file has nane like "jtds-1.2.5.jar".

Port defaults to 1433

MSDN inplies instances are port-specific, so can specify port or instnane
#urlid nlyte

#user name nyuser

#password hi ddenpwd

#url jdbc:jtds:sqglserver://nyhost/nlyte;instance=MSSQLSERVER

Where database is 'nlyte' and instance is ' MSSQLSERVER .

N b. this is diff. fromMs tools and JDBC driver where (depending on which
docunent you read), instance or database X are specified Ii ke HOSTNAME\ X
#driver net.sourceforge.jtds.jdbc.Driver

Tenpl ate for a Sybase dat abase

#urlid sybase

#url jdbc: sybase: Tds: host nane: 4100/ dbnane

#user nane bl ai ne

#password hi ddenpwd

This is for the jConnect driver (requires jconn3.jar)
#driver com sybase.jdbc3.jdbc. SybDri ver

Tenpl ate for Enbedded Derby / Java DB

#urlid derbyl

#url jdbc: derby: path/to/ derby/directory;create=true
#user name ${user. nane}

#password any_noaut hbydef aul t

#driver org.apache. derby.jdbc. EnbeddedDri ver

The enbedded Derby driver requires derby.jar

There'a al so the org. apache. derby.jdbc.ClientDriver driver with URL

like jdbc: derby://<server>[:<port>]/databaseNanme, which requires

derbyclient.jar.

You can use \= to commit, since the Derby team decided (why???)

not to inplenent the SQL standard statenment "commt"!!

Note that Sql Tool can not shut down an enbedded Derby database properly,
since that requires an additional SQL connection just for that purpose
However, |'ve never |ost data by shutting it down inproperly.

Other than not supporting this quirk of Derby, Sqgl Tool is mles ahead of
Derby's ij.

We will be using the "localhost-sa" sample urlid definition from the config file. The JDBC URL for this urlid is
j dbc: hsql db: hsql : //1 ocal host . That isthe URL for the default catalog of a HyperSQL Listener running
on the default port of the local host. Y ou can read about URL s to connect to other catalogs with and without listeners
in other chapters of this guide.

301

HyperS@L HyperSQL on UNIX

Run Sql Tool .

‘ java -jar path/to/sqgltool.jar |ocal host-sa ‘

If you get a prompt, then al iswell. If security is of any concern to you at al, then you should change the privileged
password in the database. Use the command SET PASSWORD command to change SA's password.

| SET PASSWORD ' newpassword' ; |

Set a strong password!

Note

If, likemost UNIX System Administrators, you often need to make up strong passwords, | highly suggest
the great littleprogram pwgen [https://sourcef orge. net/ proj ects/ pwgen/] .You
can probably get it where you get your other OS packages. The command pwgen - 1 isusudly all
you need.

Notethat with SQL -conformant databaseslike HyperSQL 2.0, user names and passwordsare case sensitive. If youdon't
guote the name, it will be interpreted as upper-case, like any named SQL object. (Only for backwards compatibility,
we do make an exception for the special user name SA, but you should always use upper-case "SA" nevertheless).

When you're finished playing, exit with the command \ q.
If you changed the SA password, then you need to update the password in thesql t ool . r ¢ file accordingly.

Y ou can, of course, also access the database with any JDBC client program. Y ou will need to modify your classpath
toinclude hsql db. j ar aswell asyour client class(es). Y ou can also use the other HSQLDB client programs, such
asorg. hsqgl db. uti | . Dat abasManager Swi ng, agraphical client with asimilar purposeto Sgl Tool .

You can use any normal UNIX account to run the JDBC clients, including Sql Tool , as long as the account has
read access to the sqgl t ool . j ar file and to an sql t ool . r ¢ file. See the Utilities Guide about where to put
sqgl t ool . r c, how to execute sql files, and other Sgl Tool features.

Create additional Accounts

Connect to the database as SA (or any other Administrative user) and run CREATE USER to create new accounts
for your catalog. HSQL DB accounts are database-catal og-specific, not Li st ener -specific.

In SQL-compliant databases, all database objects are created in a schema. If you don't specify a schema, then the
new object will be created in the default schema. To create a database aobject, your account (the account that you
connected with) must have the role DBA, or your account must have authorization for the target schema (see the
CREATE SCHEMA command about this last). When you first create a HyperSQL catalog, it has only one database
user-- SA, a DBA account, with an empty string password. Y ou should set a password (as described above). Y ou can
create as many additional usersasyou wish. To makeauser aDBA, you can usethe"ADMIN" optiontothe CREATE
USER command, command, or GRANT the DBA Role to the account after creating it.

Oncean objectiscreated, the object creator and userswith the DBA rolewill haveall privilegesto work with that object.
Other users will have only the rights which the pseudo-user PUBLIC has. To give specific users more permissions,
even rights to read objects, you can GRANT permissions for specific objects, grant Roles (which encompass a set of
permissions), or grant the DBA Role itself.

Since only people with a database account may do anything at al with the database, it is often useful to permit
other database users to view the data in your tables. To optimize performance, reduce contention, and minimize
administration, it is often best to grant SELECT to PUBLIC on table-like objects that need to be accessed by multiple
database users, with the significant exception of any data which you want to keep secret. (Similarly with EXECUTE
priv for routines and USAGE priv for other object types). Note that thisis not at all equivalent to giving the world

302

https://sourceforge.net/projects/pwgen/
https://sourceforge.net/projects/pwgen/

HyperS@L HyperSQL on UNIX

or the Internet read access to your tables- you are giving read access to people that have been given accounts for the
target database catal og.

Shutdown

Do aclean database shutdown when you are finished with the database catalog. Y ou need to connect up as SA or some
other Admin user, of course. With SglTool, you can run

‘java -jar path/to/sqltool.jar --sql 'shutdown;' |ocal host-sa ‘

Y ou don't have to worry about stopping the Li st ener becauseit shuts down automatically when all served database
catalogs are shut down.

Running Hsqldb as a System Daemon

You can, of course, run HSQL DB through inittab on System V UNIXes, but usually an init script is more convenient
and manageable. This section explains how to set up and use our UNIX init script. Our init script is only for use by
root. (That is not to say that the Listener will run as root-- it usually should not).

The main purpose of the init script is to start up a Listener for the database catalogs specified in your
server. properties file; and to gracefully shut down these same catalogs. For each catalog defined by
a server. dat abase. X setting in your .properties file, you must define an administrative "urlid" in your
sql t ool . r ¢ (these are used to access the catal ogs for validation and shutdown purposes). Finaly, you list the urlid
names in your init script config file. If, due to firewall issues, you want to run a WebServer instead of a Server, then
make sure you have a healthy WebServer with awebserver.properties set up, adjust your URLsinsql t ool . r c, and
set TARGET_CLASS in the config file.

By following the commented examples in the config file, you can start up any number of Server and/or WebServer
listener instances with or without TLS encryption, and each listener instance can serve any number of HyperSQL
catalogs (independent data sets), al with optimal efficiency from a single VM process. There are instructions in
the init script itself about how to run multiple, independently-configured VM processes. Most UNIX installations,
however, will run asingle VM with asingle Listener instance which serves multiple catalogs, for easier management
and more efficient resource usage.

After you have the init script set up, root can use it anytime to start or stop HSQLDB. (1.e., not just at system bootup
or shutdown).

Portability of hsql db init script

The primary design criterion of theinit script is portability. It does not print pretty color startup/shutdown messages as
iscommon in late-model Linuxes and HPUX; and it does not keep subsystem state files or use the startup/shutdown
functions supplied by many UNIXes, because these features are all non-portable.

Offsetting these limitations, this one script does it's intended job great on the UNIX varieties | have tested, and can
easily be modified to accommodate other UNIXes. While you don't have tight integration with OS-specific daemon
administration guis, etc., you do have a well-tested and well-behaved script that gives good, utilitarian feedback.

Init script Setup Procedure

The strategy taken here is to get the init script to run your single Server or WebServer first (as specified by
TARGET_CLASS). After that's working, you can customize the JVM that is run by running additional Listener
instancesin it, running your own applicationin it (embedding), or even overriding HSQL DB behavior with your own
overriding classes.

1. Copytheinitscript sanpl e/ hsqgl db.init tohsqgl db inthe directory where init scripts live on your
variety of UNIX. The most common locationsare/ etc/init.dor/etc/rc.d/init.donSystemV style

303

HyperS@L HyperSQL on UNIX

UNIXes,/usr/ | ocal /etc/rc.donBSD styleUNIXes, and/ Li brary/ St art upl t ens/ hsql db on
OS X (you'll need to create the directory for the last).

2. View your server. properties file. Make a note of every catalog define by a ser ver . dat abase. X
setting. A couple steps down, you will need to set up administrative access for each of these catalogs. If you are

u

sing our sample server. properties file youwill just need to set up access for the catalog specified

withfil e: db0/ dbo.

Note

Pre-2.0 versions of the hsgldb init script required use of .properties settings of the
formser ver . url i d. X. These settings are obsolete and should be removed.

3. Either copy HSQLDB_ OWNER's sql t ool . r ¢ fileinto root's home directory, or set the value of AUTH _FI LE
to the absolute path of HSQLDB_ OANER's sql t ool . r ¢ file. Thisfileisread directly by root, even if you run

h

sgldb as non-root (by setting HSQLDB_ OWNER in the config file). If you copy thefile, make sureto use chnod

to restrict permissions on the new copy. The init script will abort with an appropriate exhortation if you have the
permissions set incorrectly.

Y ou needto set up aurlid stanzainyour sqgl t ool . r c filefor network access(i.e. JDBC URL with hsgl:, hsgls;,

h

ttp:, or https:) for each catalog in your ser ver . properti es file. For our example, you need to define a

stanzafor thef i | e: db0/ dbO catalog. Y ou must supply for this catalog, ahsgl: JIDBC URL, an administrative

u

ser name, and the password.

Example 15.1. example sgltool.rc stanza

urlid | ocal hostdbl

url jdbc: hsqgl db: hsqgl ://1 ocal host
user name SA

password secret

4. Look at the comment towards the top of the init script which lists recommended locations for the configuration

fi

le for various UNIX platforms. Copy the sample config file sanpl e/ hsql db. cf g to one of the listed

locations (your choice). Edit the config file according to the instructionsin it. For our example, you will set the

Vv

alue of URLI DStol ocal host db1, since that isthe urlid name that we used inthesql t ool . r c file.

#

#
#

* H H*

H* H HH

* H H*

J

--

$l1d: hsqgl db. cfg 3583 2010-05-16 01: 49: 52Z unsaved $

Sanpl e configuration file for HyperSQL Server Listener.
See the "Hyper SQL on UNI X" chapter of the HyperSQL User Cuide.

N.b.!'!I'l'l You must place this in the right location for your type of UN X
See the init script "hsqgldb" to see where this nust be placed and
what it should be renaned to.

This file is "sourced" by a Bourne shell, so use Bourne shell syntax.
This file WLL NOT WORK until you set (at |east) the non-comented
variables to the appropriate values for your system

Life will be easier if you avoid all filepaths with spaces or any other
funny characters. Don't ask for support if you ignore this advice.

The URLIDS setting belowis new and REQUI RED. This setting replaces the
server.urlid. X settings which used to be needed in your Server's
properties file.

Bl ai ne (bl ai ne dot sinpson at adnt dot com

AVA_EXECUTABLE=/ usr/ bi n/java

304

HyperS@L HyperSQL on UNIX

Unl ess you copied the jar files fromanother system this typically

resides at $HSQLDB HOVE/li b/ sqgltool .jar, where $HSQL.DB HOVE i s your HSQ.DB
software base directory.

The file nane may actually have a version label init, like

sqgltool-1.2.3.jar (in which case, you nmust specify the full nane here).

A 'hsqgldb.jar' file (wth or without version |label) must reside in the sanme
directory as the specified sqgltool.jar file.

SQLTOOL_JAR PATH=/ opt / hsql db- 2. 0. 0/ hsqgl db/ i b/ sql t ool . j ar

For the sanple value above, there nust also exist a file

[opt/ hsqgl db-2. 0. 0/ hsqgl db/|i b/ hsql db*. j ar.

Where the file "server.properties" or "webserver.properties" resides.
SERVER_HOME=/ opt / hsgl db- 2. 0. 0/ hsql db/ dat a

What UNI X user the server will run as.

(The shutdown client is always run as root or the invoker of the init script).
Runs as root by default, but you should take the tinme to set database file

ownershi ps to another user and set that user name here.

HSQLDB_OWNER=hsql db

The HSQLDB jar file specified in HSQLDB_JAR PATH above will automatically
be in the class path. This arg specifies additional classpath el ements.

To enbed your own application, add your jar file(s) or class base

directories here, and add your main class to the | NVOC_ADDL_ARGS setting
bel ow. Anot her commpn use-case for adding to your class path is to nake
classes available to the DB engines for SQL/JRT functions and procedures.
#SERVER _ADDL_CLASSPATH=/ usr/1 ocal / di st/ currencybank. j ar

For startup or shutdown failures, you can save a |ot of debugging tinme by
tenporarily adjusting down MAX_START_SECS and MAX_TERM NATE_SECS to a
little over what it should take for successful startup and shutdown on
your system

H* H HH

We require all Server/WbServer instances to be accessible within
$MAX_START_SECS from when the Server/WbServer is started.

Defaults to 60.

Raise this is you are running lots of DB instances or have a sl ow server.
#MAX_START_SECS=200

#
#
#
#

Max time to allow for JVMto die after all HSQ.DB instances stopped.

Defaults to 60. Set high because the script will always continue as soon as
the process has stopped. The inportance of this setting is, how long until
a non-stoppi ng-JVM problemw || be detected.

#MAX_TERM NATE_SECS=0

NEW AND | MPORTANT! ! !

As noted at the top of this file, this setting replaces the old property
settings server.urlid. X

Sinply list the URLIDs for all DB instances which your *Server starts.

Usual |y, these will exactly mrror the server.database. X settings in your
server.properties or webserver.properties file.

Each urlid listed here nust be defined to a NETWORK url with Admin privil eges
in the AUTH FI LE specified below. (Network type because we use this for
inter-process communi cation)

Separate nultiple values with white space. NO OTHER SPECI AL CHARACTERS!
Make sure to quote the entire value if it contains white space separator(s).
URLI DS=' | ocal host db1'

HHHFHFHHEHH R

These are urlids # ** IN ADDI TION TO URLIDS **, for instances which the init
script should stop but not start.

Most users will not need this setting. |If you need it, you'll knowit.

Defaults to none (i.e., only URLIDS will be stopped).

#SHUTDOWN_URLI DS=' ondemand’

Sqgl Tool authentication file used only for shutdown.
The default value will be sqgltool.rc in root's hone directory, since it is
root who runs the init script.

305

HyperS@L HyperSQL on UNIX

(See the Sql Tool chapter of the HyperSQ Utilities Guide if you don't
understand this).
#AUTH_FI LE=/ hone/ bl ai ne/ sql tool .rc

Typical users will leave this unset and it will default to

org. hsqgl db. server. Server. |f you need to run the HSQLDB WbServer cl ass
instead, due to a firewall or routing inpedinment, set this to

org. hsqgl db. server. WbServer, see the docs about running WbServr, and
set up a "webserver.properties" file instead of a "server.properties".
The JVWM that is started can invoke many cl asses (see the following item
about that), but this is the server that is used (1) to check status,
(2) to shut down the JVM

#TARCET_CLASS=or g. hsql db. server. WbSer ver

#
#
#
#
#
#
#
#

This is where you may specify both command-1ine paranmeters to TARCGET_CLASS,
pl us any nunber of additional progans to run (along with their command-|ine
paraneters). The Mainlnvoker programis used to enbed these nultiple

static nmain invocations into a single JVYM so see the APl spec for

org. hsgl db. util. Minlnvoker if you want to |earn nore.

N. b. You should only use this setting to set HSQLDB Server or \WbServer
paraneters if you run nultiple instances of this class, since you can use the
server/webserver.properties file for a single instance.

Every additional class (in addition to the TARGET_CLASS)

nmust be preceded with an enpty string, so that Minlnvoker will know

you are giving a class name. Mainlnvoker will invoke the nornal

static main(String[]) method of each such cl ass.

By default, Mainlnvoker will just run TARGET_CLASS with no args.

Exanpl e that runs just the TARCET_CLASS with the specified arguments:

#1 N\VOC_ADDL_ARGS=' -si | ent fal se' #but use server.properties property instead!
Exanpl e that runs the TARGET_CLASS plus a WbServer:

#1 NVOC_ADDL_ARGS='"" org. hsql db. server. WbServer"'

Note the enpty string preceding the class nane.

Exanple that starts TARGET_CLASS with an argunment + a WebServer +

your own application with its args (i.e., the HSQLDB Servers are

"enbedded" in your application). (Set SERVER ADDL_CLASSPATH t 00).:

#1 NVOC_ADDL_ARGS=' -silent false "" org. hsgl db. server. WbServer "" com acne. Stone --env prod

HHHFHFHHEH R

you can specify different parameters for each here, even though only one
server.properties file is supported.

Not e that you use nested quotes to group argunents and to specify the
enpty-string delimter.

| ocal host"
but use server.properties for -silent option instead!
Exanple to run a non-TLS server in sane JVMwith a TLS server. In this
case, TARCET_CLASS is Server which will run both in TLS node by virtue of
setting the tls, keyStore, and keyStorePassword settings in
server*.properties, as described below, plus an "additional" Server with
overridden 'tls' and 'port' settings:
#1 N\VOC_ADDL_ARGS="'"' org. hsqgl db. server. Server --port 9002 --tls false"
This is an inportant use case. |f you run nore than one Server instance,
#
#
#
#

The TLS_* settings have been obsol et ed.

To get your server running with TLS, set

system j avax. net. ssl . keySt ore=/ path/to/your/private. keystore

system j avax. net . ssl . keySt or ePasswor d=secr et Passwor d

server.ssl =true

I'N server.properties or webserver. properties, and

MAKE THE FI LE OWNER- READ- ONLY!

See the TLS Encryption section of the HyperSQ User Guide, paying attention
to the security warning(s).

If you are running with a private server cert, then you will also need to
set "truststore" in the your Sgl Tool config file (location is set by the
AUTH FI LE variable in this file, or it nust be at the default |ocation for
HSQLDB_OWNER) .

HHFH I EHH

Any JVM args for the invocation of the JDBC client used to verify DB
instances and to shut them down (Sqgl Tool Sprayer).
Server-side System Properties should normally be set with system?*

H* H H*

306

HyperS@L HyperSQL on UNIX

settings in the server/webserver.properties file.

Thi s exanpl e specifies the location of a private trust store for TLS
encrypti on.

For multiple args, put quotes around entire val ue.

If you are starting just a TLS encrypted Listener, you need to unconment
this so the init scripts uses TLS to connect.

If using a private keystore, you also need to set "truststore" settings in
the sqgltool.rc file.

#CLI ENT_JVNMARGS=- Dj avax. net . debug=ssl

This sanple val ue displays useful debugging information about TLS/ SSL.

HHHFHIFHEHRER

Any JVM args for the server.

For multiple args, put quotes around entire val ue.

#SERVER_JVMARGS=- Xnx512m

You can set the "javax.net.debug" property on the server side here, in the
same exact way as shown for the client side above.

Verify that theinit script works.

Just run

\ / pat h/ t o/ hsql db

asroot to see the arguments you may use. Notice that you can run

‘ /path/to/ hsql db status

at any time to see whether your HSQLDB Li st ener isrunning.

Re-run the script with each of the possible arguments to really test it good. If anything doesn't work right, then
seethe Troubleshooting the Init Script section.

5. Téel your OSto run the init script upon system startup and shutdown. If you are using a UNIX variant that has
/etc/rc.conf or/etc/rc. conf.local (likeBSD variants and Gentoo), you must set "hsgldb_enable"
to "YES" in either of those files. (Justruncd /etc; |s rc.conf rc.conf.l|ocal toseeif you have
one of thesefiles). For good UNIXes that use System V style init, you must set up hard links or soft links either
manually or with management tools (such aschkconfi g ori nsser v) or Gui's (like run level editors).

Thisparagraphisfor Mac OS X usersonly. If you followed the instructions above, your init script should reside at
/ Li brary/ Startupltens/hsqgl db/ hsql db. Now copy thefileSt art upPar anet er s. pl i st from
the directory src/ or g. hsql db/ sanpl e of your HSQLDB distribution to the same directory as the init
script. Aslong as these two filesreside in / Li brary/ St art upl t ens/ hsql db, your init script is active
(for portahility reasons, it doesn't check for asettingin/ et ¢/ host confi g). You canrun it asa Sartup Item
by running

‘ SystenStarter {start|stop|restart} Hsql db

Hsgldb is the service name. See the man page for Syst entst ar t er . To disable the init script, wipe out the /
Li brary/ Startupltens/ hsql db directory. Hard to believe, but the Mac peopl e tell methat during system
shutdown the Startup Items don't run at all. Therefore, if you don't want your data corrupted, make sure to run
"SystemStarter stop Hsgldb" before shutting down your Mac.

Follow the examplesin the config file to add additional classesto the server JVM's classpath and to execute additional
classesin your VM. (Seethe SERVER_ADDL_CLASSPATHand | NVOC_ADDL_ARGS items).

Troubleshooting the Init Script

Definitely look at the init script log file, which is at an OS-sependent location, but is usually at / var/ | og/
hsql db. | og.

307

HyperS@L HyperSQL on UNIX

Doaps tolook for processescontainingthestringhsql db, andtry to connect to the databasefrom any client. If theinit
script starts up your database successfully, but incorrectly reportsthat it has not, then your problem iswith specification
of urlid(s) or SqlTool setup. If your database really did not start, then skip to the next paragraph. Verify that your
config fileassignsaurlid for each catalog defined inser ver . properti es orwebserver. properti es, then
verify that you can run Sgl Tool asroot to connect to the catalogs with these urlids. (For the latter test, use the - -
rcfil e switchif you are setting AUTH_FI LE in theinit script config file).

If your database really is not starting, then verify that you can su to the database owner account and start the database.
The command su USERNAME -c ... won't work on most UNIXes unless the target user has area login shell.
Therefore, if you try to tighten up security by disabling this user's login shell, you will break the init script. If these
possibilities don't pan out, then debug the init script or seek help, as described below.

To debug the init script, run it in verbose mode to see exactly what is happening (and perhaps manually run the steps
that are suspect). To run aninit script (in fact, any sh shell script) in verbose mode, use sh withthe- x or - v switch, like

‘ sh -x path/to/ hsqgldb start ‘

See the man page for sh if you don't know the difference between - v and - x.

If you want troubleshooting help, use the HSQLDB lists/forums. Make sure to include the revision number from your
hsql db init script (it's towards the top in the line that starts like "# $Id:"), and the output of arun of

‘ sh -x path/to/hsqgldb start > /tnp/hstart.|log 2>&1 ‘

Upgrading
This section is for users who are using our UNIX init script, and who are upgrading their HyperSQL installation.

Most users will not have customized the init script itself, and your customizations will al be encapsulated in the
init script configuration file. These users should just overwrite their init script with a new one from the HyperSQL
installation, and manually merge config file settings. First, just copy the file/ sanpl e/ hsql db. i ni t over top of
of your init script (wherever it runs from). Then update your old config file according to the instructions in the new
config filetemplate at sanpl e/ hsql db. cf g. Youwill haveto change very few settings. If you are upgrading from
apre-2.0 installation to a post-2.0 installation, you will need to (1) add the setting URLI DS, as described above and
in the inline comments, and (2) replace variable HSQLDB_JAR_PATH with SQLTOOL_JAR_PATH which (if you
haven't guessed) should be set to the path to your sql t ool . j ar file.

Users who customized their init script will need to merge their customizations into the new init script.

308

HyperS@L

Chapter 16. Deployment Guide

Fred Toussi, The HSQL Development Group
$Revision: 6125 $

Copyright 2002-2020 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.

2020-06-29

Memory and Disk Use

Memory used by the program can be thought of astwo distinct pools; memory used for table datawhich is not released
unless the data is deleted and memory that can be released or is released automatically, including memory used for
caching, building result sets and other internal operations such as storing the information needed for a rollback a
transaction.

Most VM implementations all ocate up to amaximum amount of memory (usually 64 MB by default). Thisamount is
generally not adequate when large memory tables are used, or when the average size of rowsin cached tablesislarger
than a few hundred bytes. The maximum amount of alocated memory can be set on the Java command line that is
used for running HyperSQL . For example, the VM parameter - Xmx 256 mincreases the amount to 256 MB.

Table Memory Allocation

The memory used for aMEMORY tableisthe sum of memory used by each row. Each MEMORY tablerow isaJava
object that has 2 int or reference variables. It contains an array of objects for the fields in the row. Each field is an
object such as | nt eger, Long, St ri ng, etc. In addition, each index on the table adds a node object to the row.
Each node object has 6 int or reference variables. Asaresult, atable with just one column of type INTEGER will have
four objects per row, with atotal of 10 variables of 4 bytes each - currently taking up 80 bytes per row. Beyond this,
each extra column in the table adds at least a few bytes to the size of each row.

Result Set Memory Allocation

By default, al the rows in the result set are built in memory, so very large result sets may not be possible to build. A
server-mode databases rel eases the result set from the server memory once the database server has returned the result
set. An in-process database rel eases the memory when the application program closesthej ava. sql . Resul t Set

object. A server mode database requires additional memory for returning result sets, as it converts the full result set
into an array of bytes which is then transmitted to the client.

HyperSQL 2 supports disk-based result sets. The commands, SET SESSI ON RESULT MEMORY ROWS
<i nt eger >and SET DATABASE DEFAULT RESULT MEMORY ROWS <i nt eger > specify athreshold for the
number of rows. Resultswith row counts above the threshold are stored on disk. These settings also apply to temporary
tables, views and subquery tables.

Disk-based result sets slow down the database operations and should be used only when absolutely necessary, perhaps
with result sets that are larger than tens of thousands of rows.

In a server mode database, when the setFetchSize() method of the Statement interface is used to limit the number of
rows fetched, the whole result is held by the engine and is returned to the JDBC ResultSet in blocks of rows of the
specified fetch size.

309

HyperS@L Deployment Guide

Temporary Memory Use During Operations

When UPDATE and DELETE queries are performed on CACHED tables, the full set of rows that are affected,
including those affected due to ON UPDATE actions, is held in memory for the duration of the operation. This means
it may not be possible to perform deletes or updates involving very large numbers of rows of CACHED tables. Such
operations should be performed in smaller sets. This memory is released as soon as the DELETE or UPDATE is
performed.

When transactions support is enabled with SET AUTOCOMMIT FALSE, listsof all insert, delete or update operations
are stored in memory so that they can be undone when ROLLBACK is issued. For CACHED tables, only the
transaction information is held in memory, not the actua rows that have changed. Transactions that span thousands
of modifications to data will take up alot of memory until the next COMMIT or ROLLBACK clears the list. Each
row modification uses less than 100 bytes until COMMIT.

When subqueries or views are used in SELECT and other statements, transient tables are created and populated by the
engine. If the SET SESSI ON RESULT MEMORY ROAS <i nt eger > statement has been used, these transient
tables are stored on disk when they are larger than the threshold.

Data Cache Memory Allocation

With CACHED tables, the data is stored on disk and only up to a maximum number of rows are held in memory at
any time. The default is up to 50,000 rows. The SET FILES CACHE ROWS command or the hsgldb.cache rows
connection property can be set to alter this amount. As any random subset of the rowsin any of the CACHED tables
can be held in the cache, the amount of memory needed by cached rows can reach the sum of the rows containing the
largest field data. For example if atable with 100,000 rows contains 40,000 rows with 1,000 bytes of datain each row
and 60,000 rows with 100 bytes in each, the cache can grow to contain 50,000 of the smaller rows, but as explained
further, only 10,000 or the large rows.

An additional property, hsgldb.cache size is used in conjunction with the hsgldb.cache rows property. This puts a
limit in bytes on the total size of rowsthat are cached. The default value is 10,000KB. Thisisthe size of binary images
of the rows and indexes. It trandates to more actual memory, typically 2-4 times, used for the cache because the data
is represented by Java objects.

If memory islimited, the hsgldb.cache rows or hsgldb.cache_size database properties can be reduced. In the example
above, if the hsgldb.cache size is reduced from 10,000 to 5,000, it may allow the number of cached rows to reach
50,000 small rows, but only 5,000 of the larger rows.

Datafor CLOB and BLOB columnsis not cached and does not affect the CACHED table memory cache.

The use of Java NIO file access method also increases memory usage. Access with NIO improves database update
speed and is used by default for datafiles up to 256 MB. For minimal memory use, NIO access should be disabled.

The operating system usually allocates alarge amount of buffer memory for speed up file read operations. Therefore,
when alot of memory is available to the operating system, all database operations perform faster.

Object Pool Memory Allocation

HyperSQL uses a set of fast pools for immutable objects such as Integer, Long and short String objects that are stored
in the database. In most circumstances, this reduces the memory footprint still further as fewer copies of the most
frequently used objects are kept in memory. The object pools are shared among all databasesin the VM. The size of
each pool can be modified only by altering and recompiling the or g. hsql db. st or e. Val uePool class.

310

HyperS@L Deployment Guide

Lob Memory Usage

Accessto lobsis aways performed in chunks, so it is perfectly possible to store and accessa CLOB or BLOB that is
larger than the VM memory alocation. The actual total size of lobs is almost unlimited. We have tested with over
100 GB of lobs without any loss of performance.

By default, HyperSQL 2 uses memory-based tablesfor thelob schema (not the actual |ob data). Therefore, itispractical
to store about 100,000 individual lobs in the database with the default VM memory allocation. More lobs can be
stored with larger VM memory alocations. In order to store more than afew hundreds of thousands of Iobs, you can
change the |ob schema storage to CACHED tables with the following statements:

Example 16.1. Using CACHED tablesfor the LOB schema

SET TABLE SYSTEM LOBS. BLOCKS TYPE CACHED
SET TABLE SYSTEM LOBS. LOBS TYPE CACHED
SET TABLE SYSTEM LOBS. LOB_| DS TYPE CACHED

Using NIO File Access

This method of file access uses the operating system's memory-mapped file buffer for the . dat a file. For larger
databases with CACHED tables, use of nio improves database access speed significantly. Performance improvements
can be tenfold or even higher. By default, NIO is used for . dat a filesfrom 16 MB up to 256 MB. Y ou can increase
the limit with the SET FILES N O Sl ZE <val ue> statement. There should be enough RAM available to
accommodate the memory mapped buffers. For vary large nio usage, a 64 bit VM must be used. The memory is not
taken from the VM memory allocation, therefore there is no need to increase the -Xmx parameter of the VM. If not
enough memory is available for the specified value, nio is not used.

Extra Disk Space Use

With file: database, the engine uses the disk for storage of data and any change. For safely, the engine makes copies of
the data internally during operation. Spare space, at larger than the total size of the. dat a and. scri pt files, plus
the maximum allowed size of the . | og file, isneeded. The. | obs fileis not copied during database updates asit is
not necessary for safety. When the RESULT MEMORY ROWS setting is used to limit the memory rowsin result sets
and temporary tables, each session uses additional disk space for large results and temporary tables. These results are
stored in files in the temp directory alongside the database files, which are deleted at database shutdown.

Using HyperSQL Without Logging Data Change

All file database that are not readonly, write changesto the . | og file. There are scenarios where writing tothe.. | og
file can be turned off to improve performance, especially with larger databases. For these applications you can set
the property hsql db. | og_dat a=f al se to disable the recovery log and speed up data change performance. The
equivalent SQL command is SET FILESLOG FALSE.

With this setting, no data is logged, but all the changes to cached tables are written to the . dat a file. To persist al
the data changes up to date, you can use the CHECKPOINT command. If you perform SHUTDOWN, the dataiis also
persisted correctly. If you do not use CHECKPOINT or SHUTDOWN when you terminate the application, all the
changes are lost and the database revertsto its original state when it is opened without losing any of the original data.

Y our server applications can use a database as a temporary disk data cache which is not persisted past the lifetime of
the application. For this usage, delete the database files when the application ends.

On some platforms, such as embedded devices with SSD storage, thisis also auseful option. Y our application issues
CHECKPOINT to save the changes made so far. This method of use reduces write operations on SSD devices. For
this usage, the lock file should also be disabled with the connection property hsql db. | ock_fi |l e=f al se.

311

HyperS@L Deployment Guide

Bulk Inserts, Updates and Deletes

Bulk inserts, deletes and updates are performed with the best performance with the following method. The database
remains safe and consistent using this method. In the event of a machine crash during the operation, the database can
be recovered to the point just before the bulk operation.

1. Before the operation, execute the SET FILES LOG FAL SE statement.
2. Execute the CHECKPOINT statement.

3. Perform all the bulk operations, using batched prepared statements. A batch size of 1000 to 10000 is adequate.
Perform commit after each batch.

4. After all the bulk operations are complete, execute the SET FILES LOG TRUE statement.
5. Finally execute the CHECKPOINT statement.

6. If you have performed many thousands of updates or deletes (not just inserts), it is a good idea to execute
CHECKPOINT DEFRAG, instead of CHECKPOINT at the end.

7. If things go wrong during the bulk operation, for example when a unique constraint violation aborts the operation,
and you want to redo the whole operation, just use SHUTDOWN IMMEDIATELY instead of CHECKPOINT.
When you restart the database it will revert to the state at the firss CHECKPOINT and the bulk operation can be
redone.

Managing Database Connections

In all running modes (server or in-process) multiple connections to the database engine are supported. in-process
(standal one) mode supports connections from the client in the same Java Virtual Machine, while server modes support
connections over the network from several different clients.

Connection pooling software can be used to connect to the database but it is not generally necessary. Connection pools
may be used for the following reasons.

* To alow new queries to be performed while a time-consuming query is being performed in the background. In
HyperSQL, blocking depends on the transaction control model, the isolation level, and the current activity by other

Sessions.

* Tolimit the maximum number of simultaneous connectionsto the database for performancereasons. With HSQLDB
this can be useful if your application is designed in a way that opens and closes connections for each small task.
Also, the overall performance may be higher when fewer simultaneous connections are used. If you want to reduce
the number of simultaneous sessions, you can use a connection pool with fewer pooled connections.

An application that is not both multi-threaded and transactional, such as an application for recording user login and
logout actions, does not need more than one connection. The connection can stay open indefinitely and reopened only
when it is dropped due to network problems.

When using an in-process database, when the last connection to the databaseis closed, the database still remains open,
waiting for the next connection to be made. From version 2.2.9, each time the last connection is closed all the data
changes are logged and synched to disk.

An explicit SHUTDOWN command, with or without an argument, is required to close the database. A connection
property, shutdown=true, can be used on the connection URL or in a properties object to shutdown the database when
the last connection is closed.

312

HyperS@L Deployment Guide

When using a server database (and to some extent, an in-process database), care must be taken to avoid creating
and dropping JDBC Connections too frequently. Failure to observe this will result in poor performance when the
application is under heavy load.

A common error made by usersin load-test smulations is to use a single client machine to open and close thousands
of connections to a HyperSQL server instance. The connection attempts will fail after a few thousand because of OS
restrictions on opening sockets and the delay that is built into the OSin closing them.

Application Development and Testing

First thing to be aware of is the SQL conformance settings of HyperSQL. By default, HyperSQL version 2 applies
stricter conformance rulesthan version 1.8 and catcheslong strings or decimal valuesthat do not fit within the specified
length or precision settings. However, there are several conformance settings that are turned off by default. Thisis
to enable easier migration from earlier versions, and also greater compatibility with databases such as MySQL that
are sometimes very liberal with type conversions. The conformance settings are listed in the System Management
chapter and their connection property equivalents are listed in the Database Properties chapter. Ideally, all the settings
that are not for syntax compatibility with other databases should have a true value for best error checking. You can
turn on the settings for syntax compatibility with another database if you are porting or testing applications targeted
at the other database.

For application unit testing you can use an all-in-memory, in-process database.

If the tests are all run in one process, then the contents of a mem: database survives between tests. To release the
contents, you can use the SHUTDOWN command (an SQL command). Y ou can even use multiple mem:; databases
in your tests and SHUTDOWN each one separately.

If the tests are in different processes and you want to keep the data between the tests, the best solution is to use a
Server instance that has a mem: database. After the tests are done, you can SHUTDOWN this database, which will
shutdown the server.

The Server has an option that allows databases to be created as needed by making a connection (see the Listeners
Chapter). This option is useful for testing, as your server is never shut down when a database is shutdown. Each time
you connect to the mem: database that is served by the Server, the database is created if it does not exist (i.e. has been
previously shut down).

If you do not want to run a Server instance, and you need persistence between tests in different processes, then you
should use afile: database. From version 2.2.9 when the last existing connection to the database is closed, the latest
changesto the database are persisted fully with fsync. The databaseisstill in an open state until it is shut down. Y ou can
use the shut down=t r ue connection property to close the database automatically after the connections are closed.
The automatic sync and shutdown are mainly for test environment. In production environments you should execute
the SHUTDOWN statement before your application is closed. This ensures a quick start next time you connect to
the database.

Anaternativeoptionistousehsqgl db. wri t e_del ay=f al se connection property, but thisisdightly slower than
the other option and should be used in situations where the test application does not close the connections. Thisoption
uses fsync after each commit. Even if the test processis aborted without shutting down the connections, all committed
datais saved. It has been reported that some data access frameworks do not close all their connection to the database
after the tests. In such situations, you need to use this option if you want the data to persist at the end of the tests

Y ou may actually want to use afile; database, or a server instance that serves afile: database in preference to a mem:
database. As HyperSQL logs the DDL and DML statementsin the . | og file, this file can be used to check what is
being sent to the database. Note that UPDATE statements are represented by a DELETE followed by an INSERT
statement. Statements are written out when the connection commits. The write delay also has an effect on how soon
the statements are written out. By default, the write delay is 0.5 second.

313

HyperS@L Deployment Guide

The SQL logging feature in version 2.2 and later records all executed statements and can be used for debugging your
application.

Some types of tests start with adatabase that already contains the tables and data, and perform various operationson it
during the tests. Y ou can create and populate the initial database then set the property "fi | es_r eadonl y=t r ue”
inthe . properti es file of the database. The tests can then modify the database, but these modifications are not
persisted after the tests have completed.

Databases with "f i | es_r eadonl y=t r ue" can be placed within the classpath and in a jar file. In this case, the
connection URL must use the res: protocol, which treats the database as a resource.

Tweaking the Mode of Operation

Different modes of operation and settings are used for different purposes. Some scenarios are discussed below:

Embedded Databases in Desktop Applications

In this usage, the amount of data change is often limited and there is often a requirement to persist
the data immediately. The default write delay of 0.5 second is fine for many applications. You can
also use the property hsql db. wite delay nmillis=100 to reduce it to 0.1 second, or the property
hsql db. wi t e_del ay=f al se to force a disk fsync after each commit. Before the application is closed, you
should perform the SHUTDOWN command to ensure the database is opened instantly when it is next opened. Note
you don't need to use SHUTDOWN COMPACT as routine.

Embedded Databases in Server Applications

Thisusageinvolvesaserver application, such asaweb application, connecting to an embedded HyperSQL instance. In
this usage, the database is often accessed heavily, therefore performance and latency isaconsideration. If the database
is updated heavily, the default value of the WRITE DELAY property (0.5 sec) is often enough, as it is assumed the
server or the application does not go down frequently. If it is necessary, you can reducethe WRITE DELAY to asmall
value (20 ms) without impacting the update speed. If you reduce WRITE DELAY to zero, performance drops to the
speed of disk file sync operation.

Alternatively, a server application can use an all-in-memory database instance for fast access, while sending the data
changes to a persistent, disk based instance either periodically or in real time.

Mixed Mode : Embedding a HyperSQL Server (Listener)

Since you won't be able to access in-process database instances from other processes, you will often want to run a
Listener in your applications that use embedded databases. Y ou can do this by starting up a Server or WebServer
instance programatically, but you could also use the class or g. hsql db. uti | . Mai nl nvoker to start up your
application and aHyperSQL Server or WebServer without any programming. Mainlnvoker isageneral-purpose utility
class to invoke the main methods of multiple classes. Each main classis followed by its arguments (if any), then an
empty string to separate it from the next main class.

Example 16.2. Mainlnvoker Example

java -cp path/to/your/app.jar:path/to/hsqldb.jar org.hsqldb.util.Minlnvoker com your. nain. App
" org. hsql db. server. Server

(Use; instead of : to delimit classpath elements on Windows). The empty string separates your com.your.main.App
invocation from the org.hsgldb.server.

Specify the same in-process JDBC URL to your app and inthe ser ver . properti es file. You can then connect
to the database from outside using aJDBC URL likej dbc: hsql db: hsql : / / host nanme, while connecting from
inside the application using something likej dbc: hsql db: file: <fil epath of database>.

314

HyperS@L Deployment Guide

This tactic can be used to run off-the-shelf server applications with an embedded HyperSQL Server, without doing
any coding.

Mai nl nvoker can be used to run any number of Java class main method invocationsin asingle VM. See the API
specfor Mai nl nvoker for details on its usage.

Server Databases

Running databases in a HyperSQL server is the best overall method of access. Asthe VM process is separate from
the application, this method is the most reliable as well as the most accessible method of running databases.

Upgrading Databases

HSQLDB version 2.5.1 and later can open databases created with version 2.0 and above. It will not open databases
created with older versions. It isagood ideato perform SHUTDOWN COMPACT after the upgrade.

Downgrading is also possible. Once a database is upgraded to 2.5.1, you need to perform SHUTDOWN SCRIPT
before you open it with previous 2.x.x versions of HyperSQL.

To upgrade an old database created with version 1.8.x, you can use HSQL DB version 2.3.x to 2.5.0 to open the database
and perform SHUTDOWN SCRIPT. Y ou can then open the database with version 2.5.1 or later.

If the 1.8.x database script format is set to BINARY or COMPRESSED (ZIPPED), you must open the database with
version 1.8.x and issuethe SET SCRIPTFORMAT TEXT and SHUTDOWN SCRIPT commandswith the old version,
prior to version upgrade.

It is strongly recommended to execute SHUTDOWN SCRIPT after an automatic upgrade from previous versions.

A note about SHUTDOWN modes. SHUTDOWN COMPACT is equivalent to SHUTDOWN SCRIPT plus opening
the database and then performing a simple SHUTDOWN.

After upgrading a database, there will be some changes to its settings. For example, the new SET FILES BACKUP
INCREMENT TRUE is applied to improve the shutdown and checkpoint times of larger databases.

If your database has been created with version 1.7.2 or 1.7.3, first upgrade to version 1.8.1 and perform aSHUTDOWN
SCRIPT with thisversion. Y ou can then upgrade the database to version 2.x.

To upgradefrom older version database files (1.7.1 and older) that contain CACHED tables, usethe SCRIPT procedure
below. In all versions of HyperSQL, the SCRI PT ' fi | enanme' command (used as an SQL statement) allows you
to save afull record of your database, including database object definitions and data, to afile of your choice. Y ou can
then use the PERFORM IMPORT ... statement to load thefile.

Manual Changes to the *.script File

The*. scri pt filecontains SQL statementsfor the database settingsand creation of objects such astables, sequences
and user-defined function. It also contains INSERT statements to populate MEMORY tables. A new copy of the
* . script fileiscreated by the database engine at each checkpoint or shutdown. Thisfile is read when the database
is opened. Only some types of SQL statements are used in thisfile; for example no UPDATE or DEL ETE statements
are used, and the statements in the file follow a certain sequence. Therefore, the *. scri pt file cannot be edited
freely by the user and any edits must respect the acceptable format.

In HyperSQL the full range of ALTER TABLE commands is available to change the data structures and their names.
However, if an old database cannot be opened due to data inconsistencies, or it uses index or column names that are
not compatible with 2.0, manual editing of the*. scri pt file can be performed and can be faster.

315

HyperS@L Deployment Guide

» Version 2.x does not accept duplicate names for indexes that were allowed before 1.7.2.
» Version 2.x does not accept some table or column names that are SQL reserved keywords without double quoting.

» Version 2.x does not accept unquoted table or column names which begin with an underscore, unless the connection
sql . regul ar _nanes isset false.

» Version 2.x ismore strict with check conditions and default values.

Other manual changes are also possible. Note that the* . scri pt file must be the result of a SHUTDOWN SCRIPT
and must contain the full data for the database. The following changes can be applied so long as they do not affect
the integrity of existing data.

* Names

Names of tables, columns and indexes can be changed. These changes must be consistent regarding foreign key
constraint references.

¢ CHECK
A check constraint can always be removed.
 NOT NULL
A not-null constraint can always be removed.
* PRI MARY KEY
A primary key constraint can be removed. It cannot be removed if there isaforeign key referencing the column(s).
« UNI QUE
A UNIQUE constraint can be removed if there is no foreign key referencing the column(s).
* FORElI GN KEY
A FOREIGN KEY constraint can always be removed.
« COLUW TYPES
Some changes to column types are possible. For example an INTEGER column can be changed to BIGINT.
* I NSERT St atenents
INSERT statements may be added to the file in the same format as written by the engine.
e Character Escapes
All non-ASCII characters are escaped as Java Unicode escape sequences.

After completing the changes and saving the modified . scri pt file, you can open the database as normal.

Backward Compatibility Issues

HyperSQL 2 conforms to the SQL Standard better than previous versions and has many more features. For these
reasons, there may be some compatibility issues when converting old database, or using applications that were written
for version 1.8.x or earlier. Some of the potential issues (and enhancements) are listed here. See the full list of
connection properties for alternatives.

316

HyperS@L Deployment Guide

» By default, when comparison strings, the shorter string is padded with spaces. This has an effect on comparing
"test' and' test ' whicharenow considered equal, despite the length difference. Thisbehaviour is controlled
by the default PAD SPACE property of collations, which can be changed to NO PAD. See the statement SET
DATABASE COLLATI ON <name> [PAD SPACE | NO PAD].

» User names and passwords are case-sensitive. Check the . scri pt file of a database for the correct case of user
name and password and use this form in the connection properties or on connection URL.

 Itisnow possible to specify the admin username and password for a new database (instead of SA and the empty
password).

» HyperSQL 2.x has several settings that relax its conformance to the SQL Standard in the areas of type conversion
and object names. These settings can be turned on for maximum conformance.

» Check constraints must conform to the SQL Standard. A check constraint is rejected if it is not deterministic or
retrospectively deterministic. When opening an old database, HyperSQL silently drops check constraints that no
longer compile. See under check constraints for more detail about what is not allowed.

» Type declarations in column definition and in cast expressions must have the necessary size parameters.

* In connection with the above, an old database that did not have the enf or ce_stri ct _si ze property, is now
converted to version 2.x with the engine supplying the missing size parameters. For example, aVARCHAR column
declaration that has no size, is given a 32K size, aLONGVARCHAR column is given a 16MB size. Check these
sizes are adequate for your use, and change the column definition as necessary.

e Column names in a GROUP BY clause were previously resolved to the column label. They are now resolved to
column name first, and if the name does not match, to the column label.

« If two or more tables in a join contain columns with the same name, the columns cannot be referenced in join
and where conditions. Use table names before column names to qualify the references to such columns. The SET
DATABASE SQL REFERENCES { TRUE | FALSE } statement enables or disables this check.

o If theunqualified wild card is used, as in the statement SELECT * FROM ... no additional column references are
alowed. A table-qualified wild card allows additional column referencesin the SELECT list

» Table definitions containing GENERATED BY DEFAULT AS | DENTI TY but with no PRI MARY KEY do not
automatically create aprimary key. Database . scri pt filesmadewith 1.8 arefine, asthe PRI MARY KEY clause
is always included. But the CREATE TABLE statements in your application program may assume an automatic
primary key is created. The old shortcut, IDENTITY, is retained with the same meaning. So CREATE TABLE T
(I D I DENTI TY, DAT VARCHAR(20)) istrandatedinto CREATE TABLE T(| D | NTEGER GENERATED
BY DEFAULT AS | DENTITY PRI MARY KEY, DAT VARCHAR(20)). Thislast formisthe correct way of
defining both autoincrement and primary key in versions 1.8 and 2.x.

» CREATE ALIAS is now obsolete. Use the new function definition syntax. The or g. hsql db. Li brary class
no longer exists. You should use the SQL form of the old library functions. For example, use LOZ x) rather than
thedirect form, " or g. hsql db. Li brary. | 0g" (x) .

» Thenamesof some commandsfor changing database and session properties have changed. Seethelist of statements
in this chapter.

» Computed columns in SELECT statements which did not have an alias: These columns had no ResultM etaData
label in version 1.8, but in version 2.x, the engine generates labels such as C1, C2.

e The issue with the JDBC ResultSetMetaData methods, get Col utmNane(i nt col um) and
get Col umLabel (i nt col umm) hasbeen clarified by the JDBC 4 specification. get Col unNane() returns
the underlying column name, while get Col urmLabel () returns any specified or generated alias. HyperSQL

317

HyperS@L Deployment Guide

1.8 and 2.x have a connection property, get _col umm_nane, which defaults to true in version 2.x, but defaulted
to false in some releases of version 1.8.x. You have to explicitly specify this property as false if you want (non-
standard behaviour) get Col utmName() to return the same value as get Col unmLabel () .

HyperSQL Dependency Settings for Applications

Dependency settings using Gradle, lvy, Maven, Groovy

This section is about building applications that have build-time dependencies upon HyperSQL, and for executions that
use adependency library system. Examples of the second type are unit test runs, job runstriggered by abuild system,
or systems like Grape that pull libraries from the network at end-user run time.

What version to Pull

Thebest option for most devel opersisto use our snapshot repository, or at least to depend upon thelatest public version
of HyperSQL with arange patternlike[2,) . Here are exceptional cases where you should depend on a static version.

» Your application has code dependencies upon version-specific details of the HyperSQL distribution. In this case,
the specific dependency specification should be checked in to your source code control system alongside the code
that manifests the version-dependency. If your code is enhanced to use a newer version of HyperSQL, you should
update the version specification so that whenever code + configs are checked out, the dependency will always match
the code.

* Your organization only allows the use of vetted libraries. In this case, you vigorously maintain your configurations,
updating your dependencies and regression testing as soon as hew versions of HyperSQL are vetted. To get the best
performance and reliability from HyperSQL, you should urge the appropriate parties to vet new versions as soon
asthey are publicly released.

 You need precisely reproducible builds.

If none of these situations apply to you, then follow the suggestions in the appropriate sections below. If you need
to specify a specific version, follow the instructions in the range-versioning section but change the version range
specificationsto literal versionslike2. 2. 9.

Using the HyperSQL Snapshot Repository

Use the Latest & Greatest with Snapshots

For application testing, you may want to use the latest HSQL DB snapshot jar instead of the latest release jar. Snapshot
jars contain fixes for reported bugs and the new features as they are being tested for the next release version. You
can use the snapshot jars where you would normally include a dependency to arelease jar as a Maven artifact. The
HyperSQL Snapshot repository residesat http://hsgldb.org/repos/

Limitation of Classifiers

Classifiers are incompatible with real repository snapshots. Builders can only publish onejar variant per
product, and at this time our snapshot jars are always built debug-enabled with Java 8.

Where you insert the <repository> element depends on whether you want the definition to be personal, shared, or
project-specific, so see the Maven documentation about that. But you can paste this element verbatim:

Example 16.3. Hyper SQL Snapshot Repository Definition

<reposi tory>
<rel eases>
<enabl ed>f al se</ enabl ed>

318

http://hsqldb.org/repos/

HyperS@L Deployment Guide

</rel eases>
<snapshot s>
<enabl ed>t r ue</ enabl ed>
<updat ePol i cy>al ways</ updat ePol i cy>
<checksunPol i cy>f ai | </ checksunPol i cy>
</ snapshot s>
<i d>hsqgl db_snapshot s</i d>
<nanme>Hyper SQL Shapshot s</ name>
<url >http://hsqgl db. org/ repos</url >
<l ayout >def aul t </ | ayout >
</repository>

Snapshot Dependency Specification Examples

Example 16.4. Sample Snapshot vy Dependency

<dependency org="org. hsql db" nane="hsql db" rev="SNAPSHOT" conf="buildOnly"/>

Example 16.5. Sample Snapshot M aven Dependency

<dependency>
<gr oupl d>or g. hsql db</ gr oupl d>
<artifactld>hsqgl db</artifactld>
<ver si on>SNAPSHOT</ ver si on>
<l-- Scope defaults to "conpile":
<scope>t est </ scope>
oo

</ dependency>

Example 16.6. Sample Snapshot Gradle Dependency

dependenci es. conpi l e (group: 'org.hsqgldb', name: 'hsqgldb', version:' SNAPSHOT')
dependenci es {
runtime 'org. hsql db: hsql db: SNAPSHOT" |
' org. hsqgl db: sqgl t ool : SNAPSHOT"

}

If you want to use ani vy. xm file with a Gradle build, you will need use the Ivyxml Gradle Plugin [https:/
github.com/unsaved/gradle-ivyxml-plugin]. It just takes a few links of code in your buil d. gradl e file to
hook ini vyxm . Seethe Ivyxml documentation [https://github.com/unsaved/gradle-ivyxml-plugin/raw/master/
README.txt] to see exactly how.

Example 16.7. Sample Snapshot ivy.xml loaded by Ivyxml plugin

<i vy- nodul e version="2.0">

<dependency org="org. hsql db" nane="hsqgl db" rev="SNAPSHOT"/ >

Example 16.8. Sample Snapshot Groovy Dependency, using Grape

@ ab(group='org. hsql db', nodul e=' hsql db', versi on=" SNAPSHOT")

Range Versioning

Keeping up-to-date with Range Dependencies

319

https://github.com/unsaved/gradle-ivyxml-plugin
https://github.com/unsaved/gradle-ivyxml-plugin
https://github.com/unsaved/gradle-ivyxml-plugin
https://github.com/unsaved/gradle-ivyxml-plugin/raw/master/README.txt
https://github.com/unsaved/gradle-ivyxml-plugin/raw/master/README.txt
https://github.com/unsaved/gradle-ivyxml-plugin/raw/master/README.txt

HyperS@L

Deployment Guide

Limitation of Maven Version Range Specifiers

Note that vy (and the many systems that use Ivy underneath, like Grape and Gradle) supports the
opening exclusive] in addition to [, whereas Maven supports only the opening inclusive [specifier.
See the relevant Ivy [http://ant.apache.org/ivy/history/latest-mil estone/ivyfile/dependency.html]
or Maven [http://docs.codehaus.org/display/M AV EN/Dependency+M ediation+and+Conflict
+Resol ution#Dependency M ediationandConfli ctResol ution-DependencyV ersionRanges]

documentation for details. There are special caseswhere you should depend on a specific version instead.

Range Dependency Specification Examples

% I mportant
!

- For all examples below, when a range pattern is given, it means the latest version equal or greater than
version 2. If aclassifier is shown, it is optional and you can skip it to get the default (no-classifier) jar.

Example 16.9. Sample Range | vy Dependency

<dependency org="org. hsql db" nane="hsql db" rev="[2,)" conf="j6->default"/>

| give no example here of specifying a classifier ini vy. xm because | have so far failed to get that to succeed.
Classifiersinini vy. xm are supported if using Gradle, as covered below.

Example 16.10. Sample Range M aven Dependency

See note above about Maven range specifications.

<dependency>
<gr oupl d>or g. hsql db</ gr oupl d>
<artifactld>hsqgl db</artifact!ld>
<versi on>[2,)</versi on>
<l-- Scope defaults to "conpile":
<scope>t est </ scope>

Use a classifier to pull one of our alternative jars

<cl assi fi er>j dk5</cl assi fi er>
oo

</ dependency>

Example 16.11. Sample Range Gradle Dependency

dependenci es. conpi l e (group: 'org.hsqgldb', name: 'hsql db’'

dependenci es {
runtinme 'org. hsqgl db: hsql db:[2,):j dk6édebug@ ar"
‘org. hsqgl db: sqltool : [2,):] dk6édebug@ ar’

}

version:'[2,)', classifier: 'jdk5")

If you want touseani vy. xm file with a Gradle build, you will need use the Ivyxml Gradle Plugin [https./
github.com/unsaved/gradle-ivyxml-plugin]. It just takes a few links of code in your bui | d. gradl e file to
hook ini vyxm . Seethe Ivyxml documentation [https://github.com/unsaved/gradie-ivyxml-plugin/raw/master/

README:.txt] to see exactly how.

Example 16.12. Sample Range ivy.xml loaded by Ivyxml plugin

320

http://ant.apache.org/ivy/history/latest-milestone/ivyfile/dependency.html
http://ant.apache.org/ivy/history/latest-milestone/ivyfile/dependency.html
http://docs.codehaus.org/display/MAVEN/Dependency+Mediation+and+Conflict+Resolution#DependencyMediationandConflictResolution-DependencyVersionRanges
http://docs.codehaus.org/display/MAVEN/Dependency+Mediation+and+Conflict+Resolution#DependencyMediationandConflictResolution-DependencyVersionRanges
http://docs.codehaus.org/display/MAVEN/Dependency+Mediation+and+Conflict+Resolution#DependencyMediationandConflictResolution-DependencyVersionRanges
https://github.com/unsaved/gradle-ivyxml-plugin
https://github.com/unsaved/gradle-ivyxml-plugin
https://github.com/unsaved/gradle-ivyxml-plugin
https://github.com/unsaved/gradle-ivyxml-plugin/raw/master/README.txt
https://github.com/unsaved/gradle-ivyxml-plugin/raw/master/README.txt
https://github.com/unsaved/gradle-ivyxml-plugin/raw/master/README.txt

HyperS@L Deployment Guide

<ivy-nodul e version="2.0" xm ns:m="http://ant.apache. org/ivy/ maven">

<dependency org="org. hsql db" nane="hsql db" rev="[2,)" mclassifier="jdk5"/>

Example 16.13. Sample Range Groovy Dependency, using Grape

@ ab(group='org. hsql db’', nodul e=' hsql db', version='[2,)', classifier="jdk6debug')

321

HyperS@L

Chapter 17. HyperSQL via ODBC

How to access a HyperSQL Server with ODBC
Blaine Simpson, The HSQL Development Group

$Revision: 5999 $
2020-06-29

Overview

Support for ODBC access to HyperSQL servers was introduced in HSQLDB version 2.0. Modified versions of the
PostgreSQL ODBC software (version 8.3) were developed and an installer for 32 bit Windows was made available for
download. Improvements were made to the server code for version 2.5.1 to allow an unmodified PostgreSQL ODBC
driver (version 11) to be used. This chapter has been adapted from the origina ODBC documentation and added to
this Guide.

The current version supports a large subset of ODBC calls. It supports all SQL statements, including prepared
statements and result set metadata, but it does not yet support database metadata, so some applications may not work.

Unix / Linux Installation

Install unixODBC and PostgreSQL psglodbc RPM or package. See htt ps:// hel p. i nt er f acewar e. coni
v6/ connect -t 0- postgresqgl -from | i nux-or-nmac-w t h- odbc

See the Settings section about individua driver runtime settings.

The unixODBC graphical program "ODBCConfig" just does not work for any driver | have ever tried to add. If the
same appliesto you, you will need to edit the files

e [etc/uni xODBC/ odbc. i ni Driver definitions
e [etc/uni xODBC/ odbci nst. i ni Globa DSN definitions
e $HOVE/ . odbc. i ni Personal DSN definitions

Depending on your UNIX or unixODBC distribution, your etc config files may be directly in/ et ¢/ instead of in
the uni x ODBC subdirectory.

Windows Installation

Download and install PostgreSQL ODBC software. We tested with version 11 of this software in Unicode mode, but
other versions may also work. In Windows, go to ODBC Data Source Administrator (via Administrative Tools, Data
Source (ODBC) or ODBC DataSource in different versions of Windows) and click on Add to add a PostgreSQL data
source. Y ou can then configure the data source.

See the Settings section about individua driver runtime settings.
These DSN definition screens are not identical to what you see, but the individual settings are the same. The Data

Source field isthe name of the ODBC data source. The database is the name of the HyperSQL database on the server.
In this example, the default server database name is indicated with a slash. Use localhost as the Server name for the

322

HyperS@L HyperSQL via ODBC

local machine. The User Name is a user name of the HyperSQL database, by default SA. Y ou must set a non-empty
password for the user, otherwise connection cannot be established.

The HyperSQL server must be started before testing the connection.

HyperSQL Unicode ODBC Driver (hsglod ﬁ;

Data Source tstdsn Dezcrption HyperSHL Unicode Test DSM
Databaze / 55L Mode | disable -
Server beyla Port 90071
User Mame BLAIME Password esssssss

| 55L mode not zupparted yet

Options
;

| D atazource | | Global

Save | Cancel |

ll

Then option screen 1 of 2.

323

HyperS@L

HyperSQL viaODBC

Advanced Options (HyperSQLu) 1/2

===

| Fage & |

Recognize Unigue [ndexes

| MyLog [~smylog_*.log)

Unknown Sizes

Cache Size: 100

@ M aximum (7 Dan't Know) Longest
Drata Type Ophions

| PLACEHOLDER | Unknowns as LongW¥arChar || Bools as Char
tizcelaneous

bl aw N archar: piala) b ax Long'arChar: 811490

|| Cancel az FreeStmt [Exp]

|| CommLog [~“haglodbe_ e log]

...and 2 of 2.

324

HyperS@L HyperSQL viaODBC

Advanced Options (HyperSQLu) 2/2 |
| - | hmﬁgﬁéﬁm.
| Bead Only || Fiow Wersioning [depr.]
|| Show Syztem T ables client WarBinary to BLOB
LF «<-» CR/LF conwerzion] True iz -1
|| Updatable Curzors
IntE Az Extra Oots
@ default () bigint numenc (0 owarchar () double) intd 0x0
010 Ophiong Lewvel of rollback on emrors
|| Show Colunn Fake Index O Mop () Transaction ! Statement
Connect Settings:
Coamwa] [

Settings

This section applies to both UNIX and Windows. The setting heading includes the descriptive name as shown by the
Windows ODBC DS Administrator, as well as the real keyword names that UNIX users will use.

The PostgreSQL ODBC Driver product consists of two driver variants. You should try to use the Unicode variant
first, since it supports the later and better ODBC protocol. Use the ANS variant if the Unicode variant won't work for
your application. The way you select the driver variant for aDSN is platform-specific. For UNIX, set the DSN setting
Dri ver tothekey asdefined inthe uniXODBC config file/ et ¢/ uni xODBC/ odbci nst . i ni . For UNIX, select
the driver after you click Add on the User DSN screen, or switch it afterwards with the DSN's Manage DSN button.

Driver settings can also be made at connection time by just appending keyword abbreviation/value assignment pairs
to the ODBC connection string, delimiting each such pair with a semicolon. Base connection Strings are language-
dependent, but you always append a String in this form

\; A0=0; B9=1

See the Table below for a concise list of the abbreviations you may use. The appendix also shows the default values
for settings (thisisreally only necessary for UNIX users, since the Windows DSN manager always shows the current
effective value).

325

HyperS@L

HyperSQL viaODBC

Runtime Driver Settings

Database

Recognize Unique Indexes
Cancel as FreeeStmt

MyLog

CommLog

Unknown Sizes

Max Varchar

Cache Size

Max LongVarChar

ReadOnly
Show System Tables

LF <-> CR/LF conversion

ODBC does not allow an empty string for a DSN database name. Therefore,
you must specify DSN database name of "/* (without the quotes) to indicate the
default database

Find out what this experimental featureisfor.

Enables fairly verbose runtime logging to the indicated file. With value 1 will
write coded mylog() messages to the MyL og file. With value 2 will write both
mylog() and inolog() messages to MyLog file.

Enables runtime communiction logging to the indicated file. With value 1, will
write coded glog() messages to the CommL og.

This controls what SQLDescribeCol and SQLColAttributes will return
as to precision for the variable data types when the precision
(for example for a column) is unspecified. For the recommended
sql _enforce_strict_size node, thissetting will have no effect.

« Maximum: Always return the maximum precision of the data type.
< Dont Know: Return "Don't Know" value and let application decide.

« Longest: Return the longest string length of the column of any row. Beware
of this setting when using cursors because the cache size may not be a good
representation of the longest column in the cache.

MS Access. Seems to handle Maximum setting ok, as well as all the others.

Borland: If sizes are large and lots of columns, Borland may crash badly (it

doesn't seem to handle memory allocation well) if using Maximum size.

Use this setting only as a work-around for client app idiocy. Generally, the
database should enforce your data constraints.

The maximum precision of the VARCHAR and CHAR types (perhaps others).
Set to 1 larger than the value you need, to allow for null terminator characters.
The default is 255 right now. 0 really means max of 0, and we need to change
this ASAP so that O will mean unlimited.

If you set this value higher than 254, Access will not let you index on varchar
columns!

When using cursors, thisis the row size of the tuple cache. If not using cursors,
this is how many tuplesto allocate memory for at any given time. The default
is 100 rows for either case.

The maximum precision of the LongVarChar type. The default is 4094 which
actually means 4095 with the null terminator. Y ou can even specify (-4) for this
size, which isthe odbc SQL_NO TOTAL value.

Whether the datasource will alow updates.

Thedriver will treat system tables as regular tablesin SQL Tables. Thisis good
for Access so you can see system tables.

Convert Unix style line endings to DOS style.

326

HyperS@L

HyperSQL viaODBC

Updatable Cursors

Row Versioning
Trueis-1
Int8 As

Extra Opts

OID Options

OID Options

Connection Settings

Samples

Enable updateable cursor emulation in the driver. Fred will be implementing
real Updatable ResultSets.

Will turn on MVVCC currency control mode, once we implement this.
Represent TRUE as -1 for compatibility with some applications.
Define what datatype to report int8 columns as.

Extra Opts: combination of the following hits.

¢ Ox1: Forcethe output of short-length formatted connection string. Check this
bit when you use MFC CDatabase class.

¢ Ox2: Fake MS SQL Server sothat MS Accessrecognizes PostgreSQL 's serial
type as AutoNumber type.

e Ox4: Reply ANSI (not Unicode) char types for the inquiries from
applications. Try to check this bit when your applications don't seem to be
good at handling Unicode data.

¢ Show Column: Includes the OID in SQL Columns. Thisis good for using as
aunique identifier to update records if no good key exists OR if the key has
many parts, which blows up the backend.

» Fake Index: This option fakes a unique index on OID. Thisis useful when
thereisnot areal uniqueindex on OID and for apps which can't ask what the
unique identifier should be (i.e, Access 2.0).

Level of rollback on errors: Specifies what to rollback should an error occur.
« Nop(0): Don't rollback anything and let the application handle the error.
e Transaction(1): Rollback the entire transaction.

« Statement(2): Rollback the statement.
default value is a sentence unit (it is atransaction unit before 8.0).

The driver sends these commands to the backend upon a successful connection.
It sends these settings AFTER it sends the driver "Connect Settings'. Use a
semi-colon (;) to separate commands. This can now handle any query, even if
it returns results. The results will be thrown away however!

The HyperSQL Engine distribution contains these same ODBC client code examplesin the sanpl e subdirectory.

» Python pyodbc sample [../verbatim/sample/sample.py]

* PHP ODBC sample [../verbatim/sample/sample.php]

» Perl DBI/DBD sample [../verbatim/sample/sample.pl]

* Cclient sample [../verbatim/sample/sample.c]

Table of Settings

See the above section for descriptions and usage details. This section just contains alist of the available settings.

327

../verbatim/sample/sample.py
../verbatim/sample/sample.py
../verbatim/sample/sample.php
../verbatim/sample/sample.php
../verbatim/sample/sample.pl
../verbatim/sample/sample.pl
../verbatim/sample/sample.c
../verbatim/sample/sample.c

HyperS@L

HyperSQL viaODBC

Table 17.1. SettingsList

Keyword Abbrev. Default Val. Purpose

Description N/A Data source description

Servername N/A [required] Name of Server

Port N/A 9001 HyperSQL Server Listen
Port

Username N/A [required] User Name

Password N/A [required] Password

Debug B2 0 MyLog logging level

Fetch A7 100 Fetch Max Count Test
to see if this applies
to EXECDIRECT and/or
prepared queries

Socket A8 4096 Socket buffer size

ReadOnly A0 No/0 Read Only

CommLog B3 0 Log communications to log
file

Uniquel ndex N/A 1 Recognize unique indexes

UnknownSizes A9 0 [= max prec. for type] Unknown result set sizes

Cancel AsFreeStmt C1 0 Cancel as FreeStmt

UnknownsAsLongVarchar (B8 0 Unknowns as LongVarchar

BoolsAsChar B9 0 Bools as Char

MaxVarcharSize BO 255 Max Varchar size. Vaue
of O will break everything.
We will be changing 0 to
mean unlimited and will
then change the default to 0.

MaxLongVarcharSize B1 8190 Max LongVarchar size

RowVersioning A4 0 Row Versioning

ShowSystemTables A5 0 Show System Tables

DisallowPremature C3 0 Disallow Premature

UpdatableCursors c4 0 Updatable Cursors

LFConversion C5 1 Windows, 0 UNIX LF <-> CR/LF conversion

TruelsMinusl C6 0 Trueis-1

Bl N/A 0 Datatype to report BIGINT
columns as

LowerCasel dentifier Cc9 0 Lower case identifier

SSLmode CA disable SSL mode

AB N/A Connection string suffix
options

Abbreviations are for use in connection strings.

328

HyperS@L

Appendix A. Lists of Keywords

List of SQL Keywords

Fred Toussi, The HSQL Development Group
$Revision: 847 $

2020-06-29

List of SQL Standard Keywords

According to the SQL Standard, the SQL Language keywords cannot be used asidentifiers (names of database objects
such as columns and tables) without quoting.

HyperSQL has two modes of operation, which are selected with the SET DATABASE SQL NAMES { TRUE |
FALSE } toalow or disalow the keywords as identifiers. The default mode is FALSE and allows the use of most
keywords as identifiers. Even in this mode, keywords cannot be used as USER or ROLE identifiers. When the mode
is TRUE, none of the keywords listed below can be used as identifiers.

All keywords can be used with double quotes as identifiers. For example

CREATE TABLE "ALL" ("AND' | NT, "WHEN' | NT)
SELECT "AND' FROM "ALL" WHERE "WHEN' = 2020

ABSe+ALL « ALLOCATE « ALTER * AND * ANY « ARE « ARRAY ¢ AS+ ASENSITIVE « ASYMMETRIC « AT
* ATOMIC » AUTHORIZATION « AVG

BEGIN « BETWEEN « BIGINT « BINARY ¢« BLOB « BOOLEAN « BOTH « BY

CALL « CALLED « CARDINALITY « CASCADED « CASE « CAST « CEIL « CEILING * CHAR+* CHAR_LENGTH
* CHARACTER « CHARACTER_LENGTH « CHECK « CLOB « CLOSE « COALESCE « COLLATE « COLLECT
* COLUMN ¢ COMMIT « COMPARABLE « CONDITION « CONNECT « CONSTRAINT « CONVERT « CORR
* CORRESPONDING » COUNT « COVAR_POP « COVAR_SAMP ¢« CREATE « CROSS « CUBE « CUME_DIST
* CURRENT « CURRENT_CATALOG « CURRENT_DATE « CURRENT_DEFAULT_TRANSFORM_GROUP -
CURRENT_PATH « CURRENT_ROLE « CURRENT_SCHEMA « CURRENT_TIME « CURRENT_TIMESTAMP
* CURRENT_TRANSFORM_GROUP_FOR_TYPE « CURRENT_USER « CURSOR * CYCLE

DATE « DAY « DEALLOCATE « DEC « DECIMAL « DECLARE « DEFAULT « DELETE « DENSE_RANK -
DEREF « DESCRIBE « DETERMINISTIC « DISCONNECT ¢ DISTINCT « DO « DOUBLE « DROP « DYNAMIC

EACH « ELEMENT « ELSE « ELSEIF « END « END_EXEC « ESCAPE « EVERY « EXCEPT « EXEC « EXECUTE
* EXISTS « EXIT « EXP e« EXTERNAL « EXTRACT

FALSE « FETCH « FILTER « FIRST_VALUE ¢ FLOAT ¢ FLOOR ¢ FOR « FOREIGN *« FREE « FROM « FULL -
FUNCTION « FUSION

GET « GLOBAL « GRANT « GROUP « GROUPING
HANDLER « HAVING « HOLD « HOUR

IDENTITY ¢ IN ¢« INDICATOR « INNER « INOUT « INSENSITIVE ¢« INSERT « INT « INTEGER ¢ INTERSECT
INTERSECTION « INTERVAL ¢« INTO « IS ITERATE

JOIN
LAG

LANGUAGE « LARGE ¢ LAST_VALUE « LATERAL « LEAD « LEADING « LEAVE ¢ LEFT ¢ LIKE -
LIKE_REGEX ¢« LN « LOCAL « LOCALTIME « LOCALTIMESTAMP ¢« LOOP « LOWER

329

HyperS@L Lists of Keywords

MATCH « MAX « MAX_CARDINALITY « MEMBER « MERGE « METHOD * MIN « MINUTE « MOD « MODIFIES
* MODULE « MONTH « MULTISET

NATIONAL « NATURAL ¢« NCHAR ¢« NCLOB « NEW ¢ NO « NONE « NORMALIZE « NOT « NTH_VALUE -
NTILE « NULL « NULLIF« NUMERIC

OCCURRENCES_REGEX ¢ OCTET_LENGTH ¢ OF « OFFSET « OLD « ON « ONLY ¢ OPEN « OR « ORDER -
OUT « OUTER * OVER * OVERLAPS * OVERLAY

PARAMETER * PARTITION « PERCENT_RANK ¢ PERCENTILE_CONT « PERCENTILE_DISC « PERIOD -
POSITION « POSITION_REGEX « POWER « PRECISION « PREPARE « PRIMARY « PROCEDURE

RANGE ¢« RANK ¢« READS * REAL « RECURSIVE « REF « REFERENCES « REFERENCING « REGR_AVGX
REGR_AVGY « REGR_COUNT « REGR_INTERCEPT « REGR_R2 « REGR_SLOPE « REGR_SXX ¢« REGR_SXY
* REGR_SYY « RELEASE « REPEAT « RESIGNAL « RESULT « RETURN « RETURNS « REVOKE ¢ RIGHT »
ROLLBACK ¢« ROLLUP « ROW « ROW_NUMBER « ROWS

SAVEPOINT « SCOPE « SCROLL « SEARCH ¢ SECOND « SELECT « SENSITIVE « SESSION_USER « SET -
SIGNAL * SIMILAR « SMALLINT « SOME « SPECIFIC « SPECIFICTYPE « SQL « SQLEXCEPTION « SQLSTATE

* SOLWARNING » SQRT « STACKED « START ¢ STATIC « STDDEV_POP+ STDDEV_SAMP e« SUBMULTISET
* SUBSTRING « SUBSTRING_REGEX ¢ SUM « SYMMETRIC « SYSTEM « SYSTEM_USER

TABLE « TABLESAMPLE « THEN ¢ TIME « TIMESTAMP « TIMEZONE_HOUR « TIMEZONE_MINUTE -«
TO « TRAILING « TRANSLATE « TRANSLATE_REGEX ¢« TRANSLATION « TREAT ¢ TRIGGER « TRIM -«
TRIM_ARRAY « TRUE « TRUNCATE

UESCAPE « UNDO * UNION ¢« UNIQUE « UNKNOWN « UNNEST « UNTIL « UPDATE »« UPPER « USER « USING
VALUE « VALUES+* VAR _POP+ VAR _SAMP e+ VARBINARY ¢« VARCHAR « VARYING
WHEN « WHENEVER « WHERE « WIDTH_BUCKET « WINDOW « WITH « WITHIN « WITHOUT « WHILE

YEAR

List of SQL Keywords Disallowed as HyperSQL
Identifiers

When the default SET DATABASE SQ. NAMES FALSE modeis used, only a subset of SQL Standard keywords
cannot be used as HyperSQL identifiers. The keywords are as follows:

ALL « AND *« ANY « AS+ AT« AVG

BETWEEN « BOTH « BY

CALL « CASE » CAST « COALESCE « CORRESPONDING « CONVERT « COUNT « CREATE « CROSS « CUBE
DEFAULT « DISTINCT « DROP

ELSE « EVERY « EXISTS « EXCEPT

FETCH « FOR « FROM « FULL

GRANT ¢ GROUP « GROUPING

HAVING

330

HyperS@L Lists of Keywords

IN « INNER « INTERSECT ¢ INTO ¢ IS

JOIN

LEFT « LEADING « LIKE

MAX « MIN

NATURAL ¢ NOT « NULLIF

ON »« ORDER *« OR * OUTER

PRIMARY

REFERENCES * RIGHT « ROLLUP

SELECT « SET « SOME « STDDEV_POP « STDDEV_SAMP « SUM
TABLE e« THEN ¢« TO « TRAILING « TRIGGER
UNION * UNIQUE « USING

VALUES+ VAR_POP+VAR_SAMP

WHEN « WHERE « WITH

Special Function Keywords

HyperSQL supports SQL Standard functions that are called without parentheses. These functions include
CURRENT_DATE, LOCALTIMESTAMP, TIMEZONE_HOUR, USER, etc. When the default SET DATABASE
SQL NAMES FALSE modeis used, keywordsthat are names of SQL functions can be used as column names without
double quotesin CREATE TABLE statements. But when theidentifier isacolumnname andisreferenced in SELECT
or other statements, the keywords must be double quoted. Otherwise the result of the SQL function isreturned instead
of the column value.

HyperSQL also supports non-standard functions SY STIMESTAMP, CURDATE, CURTIME, TODAY, SYSDATE
and NOW which can be called with or without parentheses (e.g. NOW() or NOW). These names can be used as
column names, but the names must be double quoted in SELECT and other statements.

331

HyperS@L

Appendix B. HyperSQL Database Files and

Recovery

$Revision: 5925 $
2020-06-29

Database Files

Database catal ogs opened with the file: protocol are stored as a set of files. This document describes the contents of
these files and how they are stored.

A database named 'test' is used in this description. The database files will be as follows.

Database Files

test.properties

test.script

test.data

test.backup

test.log

test.lobs

Contains the entry 'modified'. If the entry 'modified is set to 'yes then the database is either
running or was not closed correctly. When the database is properly shutdown, 'modified' is
set to 'no’.

Thisfile contains the SQL statements that makes up the database up to the last checkpoint -
itisin sync with the contents of t est . backup.

Thisfile contains the binary data records for CACHED tables only.

Depending on the backup mode (SET FILES BACKUP INCREMENT { TRUE | FALSE}),
this file contains either a backup of the parts of the t est . dat a that have been modified
since the last checkpoint (the default setting, TRUE) or the complete compressed backup of
thet est . dat a file at the time of last checkpoint (when FALSE).

This file contains the extra SQL statements that have modified the database since the last
checkpoint. It is used asaredo log.

Thisfile contains the lobs. If a database has no BLOB or CLOB aobject, this file will not be
present. Thisfile contains al the lobs that are currently in the database, as well as those that
belong to rows that have been deleted since the last checkpoint. The space for deleted lobs
isalways reused after a CHECKPOINT.

A CHECKPOINT isan operationsthat savesall the changed dataand removesthet est . | og followed by the creation
of an empty log. A SHUTDOWN is equivalent to a CHECKPOINT followed by closing the database.

States

Database is closed correctly

State after running the SHUTDOWN statement

e Thet est. dat a fileisfully updated.

* When BACKUP INCREMENT TRUE isused, thereisno t est . backup at al. Otherwise thet est . backup
contains the full compressedt est . dat a file.

e Thetest.script contains al the metadata and CREATE TABLE and other DDL statements. It also contains
the datafor MEMORY tables.

332

HyperS@L HyperSQL Database Files and
Recovery

e Thet est. properti es containsthe entry 'modified' set to 'no'.
e Thereisnotest. | og file

Database is closed correctly with SHUTDOWN SCRIPT

State after running the SHUTDOWN SCRI PT statement

» Thet est . dat a filedoes not exist; all CACHED table dataisinthet est . scri pt file

Thet est . backup doesnot exist.

» Thetest. scri pt containsall the metadataand DDL statements, followed by the datafor MEMORY, CACHED
and TEXT tables.

Thet est . properti es containsthe entry 'modified' set to 'no'.
e Thereisnotest. | og file
Database is aborted

If the database process was terminated with a SHUTDOWN, or the SHUTDOWN IMMEDIATELY was used, the
database is in aborted state.

Aborted database state
» Thet est. properti es contains 'modified=yes.

e Thetest. scri pt containsasnapshot of the database at the last checkpoint.

Thet est . dat a fileis not necessarily consistent.

Thet est . backup file containsjust sections of the original t est . dat a file, or afull snapshot of t est . dat a
that correspondstot est . scri pt at thetime of the last checkpoint.

Thet est . | og file contain al data change statements executed since the checkpoint. As a result of abnormal
termination, the end of file may be incomplete.

Procedures

The database engine performs the following procedures internally in different circumstances.

Clean Shutdown

ProcedureB.1. Clean Hyper SQL database shutdown
1. Thetest. dat a fileiswritten completely (al the modified cached table rows are written out) and closed.

2. If backup mode is not INCREMENT, the t est . backup. new is created which contains the compressed
t est. dat afile.

3. Thefilet est. scri pt. newiscreated using the current state of the database.

4. The entry 'modified’ in the properties file is set to 'yes-new-files (Note: after this step, the t est . dat a. new
andt est. scri pt. newfilesconstitute the database)

333

HyperS@L HyperSQL Database Files and

Recovery

8.

9.

Thefilet est . | og isdeleted

Thefilet est . scri pt isdeleted

Thefilet est. scri pt. newisrenamedtot est. scri pt
Thefilet est . backup isdeleted

If thefilet est . backup. newexists, itisrenamedtot est . backup

10. Theentry 'modified' in the propertiesfileis set to 'no’

Startup

Procedure B.2. Opening the Database

1. Check if the database files are in use by checking aspecial t est . | ck file.

2. Seeifthet est. properti es fileexists, otherwise createit.

3. Ifthetest. scri pt didnot exist, then thisis a new database.

4. Ifitisan existing database, check inthet est . pr operti es fileif 'modified=yes. In this case the RESTORE
operation is performed before the database is opened normally.

5. Otherwise, if in the t est. properti es file 'modified=yes-new-files, then the (old) t est . backup and
test.script filesaredeleted andthenew t est . scri pt. newfileisrenamedtot est. scri pt .

6. Openthetest. scri pt fileand create the database objects.

7. Createtheempty t est . | og to append any data change statements.

Restore

Thecurrent t est . dat a file is not necessarily consistent. The database engine takes these steps:

Procedure B.3. Restore a Database

1

Restore the old t est. data file from the backup. Depending on the backup mode, decompress the
t est. backup and overwritet est . dat a, or copy the original sections from thet est . backup file.

Execute all the statementsinthet est . scri pt file.

Execute all statementsinthet est . | og file. If due to incomplete statements in this file an exception isthrown,
the rest of the linesin thet est . | og file are ignored. This can be overridden with the database connection
property hsql db. ful | _| og_r epl ay=t r ue which results in the startup process to fail and allows the user
to examine and edit thet est . | og file.

Close the database files, before opening the restored database.

334

HyperS@L

Appendix C. Building HSQLDB Jars

How to build customized or specialized jar files
Blaine Simpson, The HSQL Development Group
Fred Toussi, The HSQL Development Group
$Revision: 6094 $

2020-06-29

Purpose

Fromversion 2.4.0, the supplied hsql db. j ar fileistested and built with Java8. The code is also tested extensively
with Java 6 as well as more recent Java versions. If you want to run with a Java 6 JVM, or if you want to use an
aternative jar (hsql db- m n. j ar, etc.) you must build the desired jar with a Java SDK. Y ou can aso find official
jars built with Java 6 in the maven repository at hsgldb.org and major maven repositories. You can also build a jar
asaJava 9+ module.

The Gradle task / Ant target expl ai nj ar s reports the versions of Javaand Ant actually used.

Building with Gradle

As noted above, Java JDK 6 or later is required.

Unlike most software build systems, you do not need to have the Gradle system installed on your computer to use it.
Y ou don't need to understand the detail sto useit, but thisis the purpose of the gr adl ewwrapper scriptsthat you can
seein HyperSQL's bui | d directory. If you want or need to learn more about Gradle, you can start on the Gradle
Documentation page [http://gradie.org/documentation] on the Gradle web site [http://gradle.org].

Gradle honors JAVA HOME

Gradle can find the Java to use by finding out where j ava is available from, but if environmental
variable JAVA HOVE isset, that will override. Therefore, if you have multiple JREsor IDK sinstalled, or
don't know if multiple are installed, you should set environmental variable JAVA_HOVE to definitively
eliminate all ambiguity.

! Rare Gotcha

Depending on your operating system, version, and how you installed your JDK, Gradle may not be
able to find the JDK. Gradle will inform you if this happens. The easiest way to fix this problem is to
set environmental variable JAVA HOVME to the root directory where your Java SDK is installed. (See
previous note for justification). So as not to get bogged down in the details here, if you don't know how
to set an environmental variable, | ask you to utilize a search engine.

Invoking a Gradle Build Graphically

Whether from an IDE, a shortcut or launch icon, to run a Gradle graphical build you just need to execute either the
file gr adl e- gui . cnd (on Windows) or gr adl e- gui (all other platforms), both of which reside in the bui | d
directory of your HyperSQL distribution.

I will explain how to invoke a graphical Gradle build from Windows Explorer and from Eclipse IDE. Users of other
operating systems should be able to infer how to use their own file manager in the same way as shown for Internet

335

http://gradle.org/documentation
http://gradle.org/documentation
http://gradle.org/documentation
http://gradle.org
http://gradle.org

HyperS@L Building HSQLDB Jars

Explorer. Users who want a desktop shortcut, quick-launch icon should first get Gradle working from afile manager
(like Windows Explorer), then seek out instructions for making shortcuts, etc. for your operating system or desktop
manager. (Try aweb search).

Some IDEs, like Intellid have direct support for Gradle. The Spring Framework team is working on a sophisticated
plugin for using Gradle with their IDE. But I'm going to document a very basic setup done with Eclipse because it's
serviceable and avery similar procedure is likely to work with all other IDEs.

Procedure C.1. Invoking Gradle GUI from Windows Explorer

1.

Start up Windows explorer. Depending on your Windows version, it will be in the Start Menu, or in the menu
you get when you right-click Start.

Navigate Windows Explorer to the bui | d directory within your HyperSQL installation.
Find an icon or line (depending on your Windows Explorer view) for thefilegr adl e- gui . cnd. If thereisno

listing for gr adl e- gui . cnd, but two listingsfor gr adl e- gui , then you want the one signified by text, icon,
or mouse-over tooltip, as abatch or CMD file. Double-click thisitem.

Procedure C.2. Setting up Gradle Graphical Buildsfrom Eclipse IDE

1.

2.

From Eclipse, use pulldown menu Run / External Tools/ External Tools Configurations....

Right-click on Program in the left navigator Right-click Project in the left navigator panel and select New.
(Depending on the state of your workspace, instead of New in the context-sensitive menu, there may be a
New_configuration or similar item nested under Program, in which case you should select that).

To the right, change the value in the Name: field to HSQLDB G adl e (or whatever name you want for this
launcher config (this Gradle launcher is only for your HSQLDB project).

Make sure that the Main tab is selected.

For the Location: field, use the Browse Workspace... button to navigate to and select the gr adl e- gui . cnd
(Windows) or gr adl e- gui (other) fileinthebui | d directory of your HyperSQL project.

336

HyperS@L Building HSQLDB Jars

= o External Tools Configurations o) 2

Create, manage, and run configurations Q
al—

Run a program

Name: IHSQLDB Gradle

| =] Main ™. w5 Refresh] i Buil:ﬂ m Enuirunment\l = Qummurﬂ

= ‘:'k Ant Build -Location:
blenderjme build I${workspace_loc:fhsqldb-lGfbuildfgradle-gui}
hsqldb-1.4 build.,
_ Browsge File System... | Variables... |
hsqldb-1.4 build,
hsqldb-16 build.x| | Working Directery:
= @4 Program
Browse Workspace... | Browse File System. .. | “ariables... |
-Arguments: |
1
Variable
—
Mote: Enclose an argument containing spaces using duuble-quutr.:f

(5 L Apply | Revert |

Filter matched 7 of 7 item

® Bun | Close

Configuring Gradle GUI Launcher in Eclipse
Depending on your Eclipse version and workspace setup, the value populated into the Location: field after you
select the program may appear very differently than in this screen shot.

6. Click the Run button. The Gradle Gui should run. (If you just Apply and Close here instead of Run, the new
Gradle launch item will not be added to the pulldown and toolbar menus).

After doing the Eclipse setup, you can use pulldown menu Run / External Tools or the equivalent tool bar button
button to launch the Gradle Gui.

337

HyperS@L Building HSQLDB Jars
— - Java - Eclipse - Thomelblainelespace3l_16 S 28
File Edit Mawvigate Search Project Bun Window Help

jcsr@ @ &0 | B # e | ®o 9 i} s
4 ~ | % 2 hsqldb-16 build.xml [hsgldb .
P 2 'EgHﬂJuﬂ‘:EI S S d =

b = blenderjme
Lless nine

P = hsqldb-1.4
b Etmp/switchedsre
o= bin

b2 agf
P [autotable

| 4% 3 hsqldb-1.4 build.xml [hsqldb]

1

% 4 hsqldb-1.4 build.xml [switchtojdkl 4] I G 8 %

Bun As
External Tocls Configurations. ..
Organize Faworites...

p (nderjme

oldb =Reference fop.

B build
b d
D E'd“ m |]
= doc-src - =
b e lib (2 Prob &3 . [& Decl] El con 1 &0 Sync] e Sear] & Hist] = B
b = sample 2 errars, 0 warnings, 0 others 7
¥ = src Description
¥ [=org b @ Errors (2 items)
= [=hsqgldb
| _ Ad
[l — 3| | 3

” ‘ 29M of 334M ‘IEJ e

|

Invoking Gradle GUI from Eclipse

Y ou can do this and close it after each use, or, to avoid startup lag, minimize it when it'snot in use.

Invoking a Gradle Build from the Command Line

Y ou can invoke graphical and non-graphical Gradle builds from the command-line.

1. Get acommand-line shell. Windows users can use either Start/Run... or Start/Start Search, and enter "cnd". Non-
windows users will know how to get a shell.

2. Inthe shell, cd to the bui | d directory under the root directory where you extracted or installed HyperSQL
to. (Operating system search or find functions can be used if you can't find it quickly by poking around on the
command line or with Windows Explorer, etc.).

3. Windowsuserscanignorethisstep. UNIX shell usersshould ensurethat the current directory (.) isintheir search
path, or prefix their gr adl ewor gr adl e- gui command in the next step with. / (e.g., like. / gr adl ew).

338

HyperS@L Building HSQLDB Jars

4. Intheshdl, run either gr adl e- gui for agraphical build; or gr adl ewfor atext-based build.
The gr adl e- gui fileis our own wrapper script for gr adl ew - - gui . Be aware that both gr adl e- gui and

gradl ew --gui suffer from the limitation that the - - gui switch is mutually exclusive with most or al other
arguments (including tasks). | have registered GRADLE bugs 1861 and 1863 about this.

Using Gradle

Using Text-based Gradle
If you ran just gr adl ew or gr adl ew. bat , then you will be presented with simple instructions for how to do

everything that you want to do. Basically, you will run the same gr adl ewor gr adl e. bat command repeatedly,
with different switches and arguments.

Note

Gradl€e's -v switch reports version details more directly than the expl ai nj ar s task does, from the
operating system version to the Groovy version (the language interpreter used for Gradle instructions).

339

HyperS@L Building HSQLDB Jars

Using the Gradle GUI
|é£,| Gradls e @ &S 1

fTask Tree | Favorites | Command Line | Setup |

W B Description &
OOCOO0K-TFaNsTorT GENErare U0CB00K OUTPUT TOr SPected SoUrte aoc
explainjars List description of jars that you can build
explainprops Explain how to change default build properties
extwalidation-setup Set up a capable standalone XML validator
fetch-images Fetch stock DocBook image files from Internet -
fetch-jflex Fetch JFlex jar file from Internet, for rebuilsing SglTool scanner
gen-docs Generate Dochook documents for project
help Displays a help message
hsgldb Build the default hsgldb.jar
hsgldbmain Build the hsgldbmain.jar (no utilities)
hsgldbmin Build the hsgldbmin.jar (no connection pooling or servers)
hsgldbtest Build the hsgldbtest.jar (default plus test classes)
hsgldbutil Build the utility hsgldbutil. jar
hsqglidbe Build the hsqgljdbc.jar for netwaork clients
javadoc Create javadoc for the distribution package
javadocdev Create javadoc for all HSQLDE code-base classes
jflex Execute JFlex. For SqlTool scanner developers,
lib compiles the WM-independent lib classes N
nichts MNoop for testing Gradle hd

[»

fExecute help' = |
(®) completed successfully at 1:20:47 AM

Executing command: ":help"” = |
help

Welcome to Gradle 1.0-milestone-3. (Wrapping Ant 1.8.2).
To run a build, run 'gradle <task= .. .'
To see a list of available tasks, run 'gradle tasks'.

Add switch -gq to make Gradle run quieter, or -1 -s to run louder
{or -d -5 for very loud).

1]

Sample Gradle GUI Screen

Procedure C.3. First Time using Gradle Gui

1. It takes the Gradle gui a while to start up, because, similar to an IDE, it is generating a list of details about
available tasks.

2. Inthe main window, in the top panel, with the Task Tree tab selected, you have the list of public tasks, sorted
alphabetically. Down bottom is displayed the output of the last task(s) execution. (After startup it will show the
output of thetask t asks).

HyperS@L Building HSQLDB Jars

3. Scrolltothehel ptask and click it onceto select it, then click the green Execute tool bar button above. (Y ou could
also have double-clicked the item, but you can use the selection procedure to pick multiple tasks with Control
or Shift keys to execute multiple tasks in a single run-- and the tasks will execute in the same order that you
had selected them).

4. Scroll through and read the output of the hel p task in the bottom panel. Where this help screen speaks about
verbosity switches, you can accomplish the same thing by using the Setup tab. Whenever Gradle output (in
the bottom panel) talks about running gr adl ew <somet ask>. . . , you can execute the specified task(s) by
selecting and executing them like we just did.

Gradle GUI Limitations

The Gradle GUI is fairly new and lacks some of the power available to text-based users. Most
significantly, in my opinion, isthefollowing item for which | have opened Gradleissues 1855. Thereisno
convenient way to set build properties. If you want to change Ant or Gradl e build settings, edit thetext file
bui | d. properti es inthe HyperSQL bui | d directory (creating it if it doesn't exist yet), and enter
your properties using Java properties file syntax. (You can also usel ocal - docbook. properti es
in the same way for DocBook-specific properties).

Building with Apache Ant

Y ou should use version 1.7.x of Ant (Another Neat Tool) to do Ant builds with HyperSQL.

Obtaining Ant

Ant is apart of the Jakarta/Apache Project.
» Home of the Apache Ant project [http://ant.apache.org]

e The Instaling Ant [http://ant.apache.org/manual/install.html#installing] page of the Ant Manual [http://
ant.apache.org/manual]. Follow the directions for your platform.

Building HSQLDB with Ant

Once you have unpacked the zip package for hsgldb, under the/ hsql db folder, in/ bui | d thereisabui | d. xm
filethat buildsthe hsql db. j ar with Ant (Ant must be already installed). To useit, changeto/ bui | d then type:

‘ ant -projecthelp

This displays the avail able ant targets, which you can supply as command line arguments to ant. These include

hsgldb tobuild thehsql db. j ar file

explainjars Lists all targets which build jar files, with an explanation of the purposes of the different jars.
clean to clean up the /classes directory that is created

clean-all to remove the old jar and doc files as well

javadoc to build javadoc

hsgldbmodule tobuild the hsql db. j ar filewith Java 9+ module information

hsgldbmain to build asmaller jar for HSQLDB that does not contain utilities

341

http://ant.apache.org
http://ant.apache.org
http://ant.apache.org/manual/install.html#installing
http://ant.apache.org/manual/install.html#installing
http://ant.apache.org/manual
http://ant.apache.org/manual
http://ant.apache.org/manual

HyperS@L Building HSQLDB Jars

hsgldbmin to build a small jar that supports in-process catalogs, but neither running nor connecting to
HyperSQL Servers.

sqltool to build sgltool .jar, which contains only the SglTool classes.
Many moretargets are available. Runant - p andant expl ai nj ars.
HSQLDB can be built in any combination of two JRE (Java Runtime Environment) versions and many jar file sizes.

A jar built with an older JRE is compatible for use with a newer JRE (you can compile with Java 6 and run with 8).
But the newer JDBC capabilities of HyperSQL and the JRE will be not be available.

The client jar (hsql j dbc.jar) contains only the HSQLDB JDBC Driver client. The smallest engine jar
(hsgl dbm n. j ar) containsthe engine and the HSQLDB JDBC Driver client. Thedefault size (hsql db. j ar) also
contains server mode support and the utilities. The largest size (hsql dbt est . j ar)includes some test classes as
well. Before buildingthe hsql dbt est . j ar package, you should download the junit jar from http://www.junit.org
and putitinthe/ | i b directory, alongsideser vl et . j ar, which isincluded in the .zip package.

If you want your code built for high performance, as opposed to debugging (in the same way that we make our
production distributions), make afile named bui | d. pr operti es inyour build directory with the contents

‘build.debug: fal se ‘

The resulting Java binaries will be faster and smaller, at the cost of exception stack traces not identifying source code
locations (which can be extremely useful for debugging).

After installing Ant on your system use the following command from the / bui | d directory. Just run ant
expl ai nj ar s for aconciselist of all availablejar files.

‘ant expl ai njars ‘

The command displays alist of different options for building different sizes of the HSQLDB Jar. The default is built
using:

Example C.1. Buiding the standard HSQL DB jar filewith Ant

‘ant hsql db

The Ant method always builds ajar with the JDK that is used by Ant and specified in its JAVA_HOME environment
variable.

Building for Different JDKs

Unlike previous versions, HyperSQL version 2.5.x cannot be compiled or used with JDK 5 or earlier. The jars can be
compiled with JDK 6 or later. Build has been tested under JDK versions 6, 8, 9, 10, 11, etc. The same Ant version
can be used with all the tested JDK's.

Building with IDE Compilers

The Ant build.xml can be used with most IDE's to build the Jar targets. All HyperSQL source files are supplied ready
to compile. It istherefore possible to compile the sources without using Ant. If compilation with Java 1.6 is required,
you should run the Ant switchtojdk6 target before compiling to modify the files that have code blocks specific to Java
8 or above (these are listed in the jdkcodeswitch.list file).

342

http://www.junit.org

HyperS@L Building HSQLDB Jars

HyperSQL CodeSwitcher

CodeSwitcher is atool to manage different version of Java source code. It allows to compile HyperSQL for different
JDKs. It is something like aprecompiler in C but it works directly on the source code and does not create intermediate
output or extrafiles.

CodeSwitcher is used internally in the Ant build. Y ou do not have to invoke it separately to compile HyperSQL.

CodeSwitcher reads the source code of a file, removes comments where appropriate and comments out the blocks
that are not used for a particular version of the file. This operation is done for all files of a defined directory, and all
subdirectories.

Example C.2. Example sour ce code before CodeSwitcher isrun

/1 #i f def JAVA8

properties. store(out, "hsqgl db dat abase");
/] #el se
| *

properties. save(out, "hsqgl db dat abase");
*/

/| #endi f

The next step isto run CodeSwitcher.

Example C.3. CodeSwitcher command line invocation

java org. hsqgldb.util.CodeSwi tcher . -JAVA8

The'." meansthe program works on the current directory (all subdirectoriesare processed recursively). - JAVA8 means
the code labelled with JAV A8 must be switched off.

Example C.4. Sour ce code after CodeSwitcher processing

/1 #i fdef JAVA8
/%
pProperties.store(out, "hsqgl db dat abase");
2f
/| #el se
pProperties. save(out, "hsql db dat abase");

/| #endi f

HyperS@L Building HSQLDB Jars

For detailed information on the command line optionsrun j ava or g. hsql db. uti |l . CodeSwi t cher . Usage
examples can be found in the build.xml fileinthe/ bui | d directory.

Building Documentation

The JavaDoc can be built simply by invoking the javadoc task/target with Gradle or Ant.

The two Guides (the one you are reading now plus the Utilities user guide) are in DocBook XML source format. To
rebuild to PDF or one of the HTML output formats from the XML source, run the Gradle target gen- docs (or the
Ant target gen- docs). Instructions will be displayed. In particular

» Obtain the HyperSQL documentation source. We no longer include our Guide source files in our main distribution
zip file, in order to keep it small. You may want to build from the trunk branch or the latest release tag. You can
download a static snapshot tarball from http://hsgldb.svn.sourceforge.net/viewvc/hsgldb/base/trunk/ or under http://
hsgldb.svn.sourceforge.net/viewvc/hsgldb/baseltags/ , or you can export a snapshot or check out awork area using
a Subversion client.

* You must locally install the DocBook set of image files, which are available for download from Sourceforge. The
gen- docs task/target will tell you of a Gradle task that you can use to download and install them automatically.
This Gradle task, i nst al | Dbl mages, will tell you how to edit a properties text file to tell it what directory to
install the filesinto. (Command-line, as opposed to GUI, builders, can use the Gradle - P switch to set the property,
instead of editing, if they prefer).

» You can optionaly install the entire DocBook style sheets (instead of just the DocBook images within it), character
entity definitions, and RNG schema file, to speed up doc build times and minimize dependency of future builds
upon network or Internet. An intermediate approach would be to install these resources onto an HTTP server or
shared network drive of your own. See the comments at the top of the filebui | d. xm in the HyperSQL bui | d
directory about where to obtain these things and how to hook them in. The same Gradletask i nst al | Dbl nages
explained above can download and install the entire stylesheet bundle (this option is offered the first time that you
runthei nst al | Dbl mages task).

. Tip

If running Gradle, you probably want to turn logging up to level info for generation and validation tasks,
because the default warn/lifecycle level doesn't give much feedback.

Thetask/target val i dat e- docs isalso very useful to DocBook builders.

The documentation license does not allow you to post modificationsto our guides, but you can modify them for internal
use by your organization, and you can use our DocBook system to write new DocBook documents related or unrelated
to HyperSQL. To create new DocBook documents, create a subdirectory off of doc- sr ¢ for each new document,
with the main DocBook sourcefilewithin having same name asthedirectory plus. xm . Seethepeer directory ut i | -

gui de or gui de asan example. If you use the high-level tasks/target gen- docs or val i dat e- docs, then copy
and paste to add new stanzas to these targetsin filebui | d. xmi .

Editors of DocBook documents (see previous paragraph for motive) may find it useful to have a standalone XML
validator so you can do your primary editing without involvement of the build system. Use the Gradle target
st andal oneVal i dat i on for this. It will tell you how to set abuild property to tell it whereto install the validator,
and will give instructions on how to useit.

There are several propertiesthat can be used to dramatically decrease run timesfor partial doc builds. Read about these
properties in comment at the top of thefilebui | d- docbook. xm inthebui | d directory.

344

HyperS@L Building HSQLDB Jars

« validation.skip
* html.skip
 chunk.skip
 fo.skip

* pdf.skip

* doc.name

e doc.target

Seethefiledoc- src/ readme- docaut hor s. t xt for details about our DocBook build system (though as| write
thisit is somewhat out of date).

HyperS@L

Appendix D. HyperSQL with OpenOffice

How to use HyperSQL with OpenOffice.org
Fred Toussi, The HSQL Development Group
$Revision: 6046 $

2020-06-29

HyperSQL with OpenOffice

OpenOffice.org / LibreOffice / ApacheOpenOffice includes HyperSQL and uses it for embedded databases. Our
collaboration with OpenOffice.org devel opers over 6 years has benefited the devel opment and maturity of HyperSQL.
Before integration into OO0, HyperSQL was intended solely for application-specific database access. The application
developer was expected to resolve any integration issues. Because OpenOffice.org is used by a vast range of users,
from schoolchildren to corporate developers, a much higher level of quality assurance has been required. We have
achieved it with constant help and feedback from OOo users and devel opers.

Apart from embedded use, you may want to use OpenOffice / LibreOffice with a HyperSQL server instance. The
typical use for thisisto allow multiple office users access to the same database.

Thereisaso astrong case for using OpenOffice to develop your database schemaand application, even if the database
isintended for your own application, rather than OpenOffice.

HyperSQ version 1.8.0 isincluded in OO0, ApacheOpenOffice and LibreOffice. Y ou can simply replace the jar with
a HyperSQL version 2.5 jar to use the latest capabilities with external databases. It is not yet possible to create and
use embedded databases with this version.

HyperSQL version 2.x jar will hopefully be included in the future versions of ApacheOpenOffice and LibreOffice.

Using OpenOffice / LibreOffice as a Database Tool

OpenOffice is a powerful database front end. If you want to create schemas, edit tables, edit the database contents
manually, design and produce well-formatted reports, then OpenOfficeis probably the best open sourcetools currently
available.

To connect from OpenOffice to your database, first run alocal server instance for the database. Thisis describesin
the Network Listeners chapter of this guide.

When you connect from OpenOffice.org, you must specify connection to an external database and use the URL
property "default_schema=true". For example, the URL to connect the local database may be like

‘ j dbc; hsql db: hsql : // | ocal host/ nydb; def aul t _schema=t r ue ‘

The only current limitation is that OpenOffice only works with the PUBLIC schema. This limitation will hopefully
disappear in the future versions of OOo.

There will hopefully be a HyperSQLDB 2.x jar in the future versions of OpenOffice.

Converting .odb files to use with HyperSQL Server

Y ou may already have an OOo database file, which you want to use outside OOo, or as a server database. Thefileis
in fact in the standard ZIP format and contains the normal HyperSQL database files. Just use a utility such as 7Zip
to expand the .odb file. In the /db directory, there are files such as .script, .data, etc. Just rename these files into
mydb.script, mydb.data, etc. Y ou can how open the mydb database directly with HyperSQL as an embedded database
or as aserver instance.

346

HyperS@L

Appendix E. HyperSQL File Links

HyperSQL Files referred to in this Guide

HyperSQL files referred to in the text may be retrieved from the canonical HyperSQL documentation site, http://

hsgldb.org/doc/2.0, or from the same location you are reading this page from.

Note

will function.

If you are reading this document with astandalone PDF reader, only the http://hsgldb.org/doc/2.0/

... links

Pairs of local + http://hsgldb.org/doc/2.0 links for referenced files.

* Loca: ../apidocs/org/hsgldb/jdbc/IDBCConnection.html
http://hsgldb.org/doc/2.0/apidocs/org/hsgl db/jdbc/IDBCConnection.html

e Local: ../apidocs/org/hsgldb/jdbc/JIDBCDriver.html
http://hsgldb.org/doc/2.0/api docs/org/hsgl db/jdbc/IDBCDriver.html

e Locd: ../apidocs/org/hsgldb/jdbc/IDBCDatabaseM etaData.html
http://hsqldb.org/doc/2.0/apidocs/org/hsgl db/jdbc/IDBCDatabaseM etaData.html

e Locd: ../apidocs/org/hsgldb/jdbc/JIDBCResultSet.html
http://hsgldb.org/doc/2.0/apidocs/org/hsgl db/jdbc/IDBCResul tSet.html

» Locd: ../apidocs/org/hsgldb/jdbc/IDBCStatement.html
http://hsgldb.org/doc/2.0/apidocs/org/hsgl db/jdbc/IDBCStatement.html

* Locd: ../apidocs/org/hsgldb/jdbc/IDBCPreparedStatement.html
http://hsqldb.org/doc/2.0/api docs/org/hsgl db/jdbc/JIDB CPreparedStatement.html

* Local: ../apidocs/org/hsgldb/util/Maininvoker.html
http://hsgldb.org/doc/2.0/apidocs/org/hsgldb/util/Mainlnvoker.html

* Locd: ../apidocs/index.html
http://hsgldb.org/doc/2.0/apidocs/

e Local: ../verbatim/src/org/hsgldb/server/Serviet.java
http://hsgldb.org/doc/2.0/verbatim/src/org/hsgldb/server/Servlet.java

e Locd: ../verbatim/src/org/hsgldb/Tokens.java
http://hsgldb.org/doc/2.0/verbatim/src/org/hsgldb/ Tokens.java

» Locd: ../verbatim/src/org/hsgldb/server/WebServer.java

http://hsgldb.org/doc/2.0/verbatim/src/org/hsgldb/server/WebServer.java

347

../apidocs/org/hsqldb/jdbc/JDBCConnection.html
http://hsqldb.org/doc/2.0/apidocs/org/hsqldb/jdbc/JDBCConnection.html
../apidocs/org/hsqldb/jdbc/JDBCDriver.html
http://hsqldb.org/doc/2.0/apidocs/org/hsqldb/jdbc/JDBCDriver.html
../apidocs/org/hsqldb/jdbc/JDBCDatabaseMetaData.html
http://hsqldb.org/doc/2.0/apidocs/org/hsqldb/jdbc/JDBCDatabaseMetaData.html
../apidocs/org/hsqldb/jdbc/JDBCResultSet.html
http://hsqldb.org/doc/2.0/apidocs/org/hsqldb/jdbc/JDBCResultSet.html
../apidocs/org/hsqldb/jdbc/JDBCStatement.html
http://hsqldb.org/doc/2.0/apidocs/org/hsqldb/jdbc/JDBCStatement.html
../apidocs/org/hsqldb/jdbc/JDBCPreparedStatement.html
http://hsqldb.org/doc/2.0/apidocs/org/hsqldb/jdbc/JDBCPreparedStatement.html
../apidocs/org/hsqldb/util/MainInvoker.html
http://hsqldb.org/doc/2.0/apidocs/org/hsqldb/util/MainInvoker.html
../apidocs/index.html
http://hsqldb.org/doc/2.0/apidocs/
../verbatim/src/org/hsqldb/server/Servlet.java
http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/server/Servlet.java
../verbatim/src/org/hsqldb/Tokens.java
http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/Tokens.java
../verbatim/src/org/hsqldb/server/WebServer.java
http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/server/WebServer.java

HyperS@L HyperSQL File Links

e Locd: ../verbatim/src/org/hsgldb/test/ TestBase.java
http://hsgldb.org/doc/2.0/verbatim/src/org/hsgldb/test/ TestBase.java

» Local: ../verbatim/src/org/hsgldb/trigger/Trigger.java
http://hsgldb.org/doc/2.0/verbatim/src/org/hsqldb/trigger/Trigger.java

» Locd: ../verbatim/src/org/hsgldb/sample/TriggerSample.java
http://hsgldb.org/doc/2.0/verbatim/src/org/hsgl db/test/sampl e/ TriggerSample.java

e Locd: ../verbatim/src/org/hsgldb/util/Maininvoker.java
http://hsgldb.org/doc/2.0/verbatim/src/org/hsgldb/util /M ainlnvoker.java

* Local: ../verbatim/sample/hsgldb.cfg
http://hsgldb.org/doc/2.0/verbatim/sample/hsgldb.cfg

* Loca: ../verbatim/sample/acl.txt
http://hsgldb.org/doc/2.0/verbatim/sampl e/acl.txt

e Locdl: ../verbatim/sample/server.properties
http://hsqldb.org/doc/2.0/verbatim/sampl e/server.properties

» Local: ../verbatim/sample/sgltool.rc
http://hsgldb.org/doc/2.0/verbatim/sample/sgltool.rc

* Local: ../verbatim/sample/hsgldb.init

http://hsgldb.org/doc/2.0/verbatim/sampl e/hsgldb.init

../verbatim/src/org/hsqldb/test/TestBase.java
http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/test/TestBase.java
../verbatim/src/org/hsqldb/trigger/Trigger.java
http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/trigger/Trigger.java
../verbatim/src/org/hsqldb/sample/TriggerSample.java
http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/test/sample/TriggerSample.java
../verbatim/src/org/hsqldb/util/MainInvoker.java
http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/util/MainInvoker.java
../verbatim/sample/hsqldb.cfg
http://hsqldb.org/doc/2.0/verbatim/sample/hsqldb.cfg
../verbatim/sample/acl.txt
http://hsqldb.org/doc/2.0/verbatim/sample/acl.txt
../verbatim/sample/server.properties
http://hsqldb.org/doc/2.0/verbatim/sample/server.properties
../verbatim/sample/sqltool.rc
http://hsqldb.org/doc/2.0/verbatim/sample/sqltool.rc
../verbatim/sample/hsqldb.init
http://hsqldb.org/doc/2.0/verbatim/sample/hsqldb.init

HyperS@L

SQL Index

Symbols
_SYSTEM ROLE, 103

A

ABS function, 203

ACOS function, 203

ACTION_ID function, 224
ADD_MONTHS function, 212

ADD COLUMN, 71

add column identity generator or sequence, 74
ADD CONSTRAINT, 72

ADD DOMAIN CONSTRAINT, 76
ADD SYSTEM PERIOD, 72

ADD SYSTEM VERSIONING, 73
ADMINISTRABLE_ROLE_AUTHORIZATIONS, 88
aggregate function, 133

ALL and ANY predicates, 130

ALTER COLUMN, 73

alter column identity generator, 74

alter column nullability, 75

ALTER DOMAIN, 76

ALTER INDEX, 84

ALTER routine, 80

ALTER SEQUENCE, 82

ALTER SESSION, 43

ALTERTABLE, 71

ALTER USER ... SET INITIAL SCHEMA, 106
ALTERUSER ... SET LOCAL, 107
ALTER USER ... SET PASSWORD, 106
ALTER view, 75
APPLICABLE_ROLES, 88

ASCII function, 196

ASCIISTR function, 196

ASIN function, 203

ASSERTIONS, 89

as subquery clause in table definition, 63
ATANZ function, 203

ATAN function, 203
AUTHORIZATION IDENTIFIER, 103
AUTHORIZATIONS, 89

B

BACKUP DATABASE, 238
BETWEEN predicate, 128
binary literal, 116

BINARY types, 19
BIT_LENGTH function, 196
BITAND function, 203
BITANDNOT function, 203
bit literal, 117

BITNOT function, 203
BITOR function, 204

BIT types, 20

BITXOR function, 204
boolean literal, 118
BOOLEAN types, 17
boolean value expression, 126

C

CARDINALITY function, 217
CASCADE or RESTRICT, 60

case expression, 122

CASEWHEN function, 219

CASE WHEN in routines, 173
CAST, 123

CEIL function, 203
CHANGE_AUTHORIZATION, 103
CHAR_LENGTH, 196
CHARACTER_LENGTH, 196
CHARACTER_SETS, 89

character literal, 116

CHARACTER types, 18

character value function, 125

CHAR function, 196
CHECK_CONSTRAINT_ROUTINE_USAGE, 89
CHECK_CONSTRAINTS, 89
CHECK constraint, 67
CHECKPOINT, 239

COALESCE expression, 122
COALESCE function, 219
COLLATE, 135

COLLATIONS, 89
COLUMN_COLUMN_USAGE, 89
COLUMN_DOMAIN_USAGE, 89
COLUMN_PRIVILEGES, 89
COLUMN_UDT_USAGE, 89
column DEFAULT clause, 65

column definition, 63

column name list, 142

column reference, 120

COLUMNS, 89

COMMENT, 61

COMMIT, 45

comparison predicate, 127
CONCAT_WSfunction, 197
CONCAT function, 197
CONSTRAINT, 136
CONSTRAINT_COLUMN_USAGE, 89
CONSTRAINT_PERIOD_USAGE, 89
CONSTRAINT _TABLE _USAGE, 89
CONSTRAINT (table constraint), 66
CONSTRAINT name and characteristics, 65
CONTAINS predicate, 131

349

HyperS@L

SQL Index

contextually typed value specification, 120
CONVERT function, 219
COSfunction, 204

COSH function, 204

COT function, 204
CREATE_SCHEMA ROLE, 103
CREATE AGGREGATE FUNCTION, 184
CREATE ASSERTION, 86

CREATE CAST, 84

CREATE CHARACTER SET, 85
CREATE COLLATION, 85
CREATE DOMAIN, 76

CREATE FUNCTION, 160
CREATE INDEX, 83

CREATE PROCEDURE, 160
CREATE ROLE, 107

CREATE SCHEMA, 61

CREATE SEQUENCE, 81

CREATE SYNONYM, 83

CREATE TABLE, 62

CREATE TRANSLATION, 85
CREATE TRIGGER, 77, 192
CREATETYPE, 84

CREATE USER, 106
CREATEVIEW, 75

CROSS JOIN, 142

CRYPT_KEY function, 221
CURDATE function, 209
CURRENT_CATALOG function, 223
CURRENT_DATE function, 208
CURRENT_ROLE function, 222
CURRENT_SCHEMA function, 222
CURRENT_TIME function, 208
CURRENT_TIMESTAMP function, 208
CURRENT_USER function, 222
CURRENT VALUE FOR, 124
CURTIME function, 209

D

DATA_TYPE_PRIVILEGES, 89
DATABASE_ISOLATION_LEVEL function, 224
DATABASE_NAME function, 222
DATABASE_TIMEZONE function, 208
DATABASE_VERSION function, 222
DATABASE function, 222

DATE_ADD function, 213

DATE_SUB function, 214

DATEADD function, 214

DATEDIFF function, 214

DATENAME, DATEPART and EOMONTH functions,
209

datetime and interval literal, 118

Datetime Operations, 23

DATETIME types, 22
datetime value expression, 125
datetime value function, 125
DAYNAME function, 209

DAY OFMONTH function, 209
DAY OFWEEK function, 210
DAY OFY EAR function, 210
DAY Sfunction datetime, 210
DBA ROLE, 103

DECLARE CURSOR, 115
DECLARE HANDLER, 169
DECLARE variable, 167
DECODE function, 220
DEGREES function, 204
DELETE FROM, 152

derived table, 140
DETERMINISTIC characteristic, 163
DIAGNOSTICS function, 221
DIFFERENCE function, 197
DISCONNECT, 46

DISTINCT, 147
DOMAIN_CONSTRAINTS, 90
DOMAINS, 90

DROP ASSERTION, 86

DROP CAST, 84

DROP CHARACTER SET, 85
DROP COLLATION, 85

DROP COLUMN, 72

drop column identity generator, 74
DROP CONSTRAINT, 72
DROP DEFAULT (table), 74
DROP DOMAIN, 77

DROP DOMAIN CONSTRAINT, 77
DROP DOMAIN DEFAULT, 76
DROP INDEX, 84

DROP ROLE, 108

DROP routine, 81

DROP SCHEMA, 62

DROP SEQUENCE, 82

DROP SYNONYM, 83

DROP SYSTEM PERIOD, 73
DROP SYSTEM VERSIONING, 73
DROP TABLE, 68

DROP TRANSLATION, 86
DROP TRIGGER, 78, 194
DROP USER, 106
DROPVIEW, 75

DYNAMIC RESULT SETS, 164

E

ELEMENT_TYPES, 90
ENABLED_ROLES, 90
EQUALS predicate, 131

350

HyperS@L

SQL Index

EXISTS predicate, 130

EXP function, 204

EXPLAIN PLAN, 152
EXPLAIN REFERENCES, 87
expression, 122

external authentication, 237
EXTERNAL NAME, 162
EXTRACT function, 211

F

Fine Grained Data Access Control, 105
FLOOR function, 204

FOREIGN KEY constraint, 66

FOR loop in routines, 172
FROM_BASE®64 function, 197

G

generated column specification, 64
GET DIAGNOSTICS, 158
GRANTED BY, 108

GRANT privilege, 108

GRANT role, 109

GREATEST function, 220
GROUPBY, 145

GROUPING OPERATIONS, 145

H

HAVING, 147

HEX function, 198
HEXTORAW function, 198
HOUR function, 210

I

identifier chain, 119

identifier definition, 59

IDENTITY function, 222

IF EXISTS, 60

IFNOT EXISTS, 60

IFNULL function, 220

IF STATEMENT, 173
INFORMATION_SCHEMA_CATALOG_NAME, 90
IN predicate, 128

INSERT function, 197

INSERT INTO, 153

INSTR function, 197

interval absolute value function, 126

interval term, 126

INTERVAL types, 26

IS AUTOCOMMIT function, 223

IS READONLY_DATABASE FILESfunction, 223
IS READONLY_DATABASE function, 223
IS READONLY_SESSION function, 223
ISDISTINCT predicate, 132

ISNULL function, 220
ISNULL predicate, 129
ISOLATION_LEVEL function, 223

J

JOIN USING, 143
JOIN with condition, 143

K

KEY_COLUMN_USAGE, 90
KEY_PERIOD_USAGE, 90

L

LANGUAGE, 162

LAST DAY function, 212
LATERAL, 140

LCASE function, 198
LEAST function, 220
LEFT function, 198
LENGTH function, 198
like clause in table definition, 62
LIKE predicate, 129

LN function, 204
LOAD_FILE function, 220
LOB_ID function, 224
LOCALTIME function, 208
LOCALTIMESTAMP function, 208
LOCATE function, 198
LOCK TABLE, 44

LOG10 function, 205

LOG function, 205
LOOP in routines, 171
LOWER function, 198
LPAD function, 199
LTRIM function, 199

M

MATCH predicate, 130
MAX_CARDINALITY function, 218
MERGE INTO, 156

MINUTE function, 210

MOD function, 205

MONTH function, 210
MONTHNAME function, 210
MONTHS BETWEEN function, 212

N

name resolution, 145
naming in joined table, 145
naming in select list, 145
NATURAL JOIN, 143
NAVL function, 205
NEXT_DAY function, 212

351

HyperS@L

SQL Index

NEXT VALUE FOR, 123

NOW function, 209

NULLIF function, 220

NULL INPUT, 163

numeric literal, 117

NUMERIC types, 15
numeric value expression, 124
numeric value function, 124
NUMTODSINTERVAL function, 215
NUMTOYMINTERVAL function, 215
NVL2 function, 221

NVL function, 221

O

OCTET_LENGTH function, 199

ON UPDATE clause (table constraint), 65
OTHER type, 21

OUTER JOIN, 144

OVERLAPS predicate, 132

OVERLAY function, 199

P

PARAMETERS, 90

password complexity, 237

PATH, 135

PERFORM CHECK INDEX, 241
PERFORM EXPORT SCRIPT, 240
PERFORM IMPORT SCRIPT, 240
PERIODS, 90

PI function, 205
POSITION_ARRAY function, 218
POSITION function, 199

POWER function, 205
PRECEDES predicate, 132
PRIMARY KEY constraint, 66
PUBLIC ROLE, 103

Q

QUARTER function, 210

R

RADIANS function, 205

RAND function, 205

RAWTOHEX function, 199
REFERENTIAL_CONSTRAINTS, 90
REGEXP_MATCHES function, 200
REGEXP_REPLACE function, 200
REGEXP_SUBSTRING_ARRAY function, 200
REGEXP_SUBSTRING function, 200
RELEASE SAVEPOINT, 45

RENAME, 60

REPEAT ... UNTIL loop in routines, 172
REPEAT function, 200

REPLACE function, 200
RESIGNAL STATEMENT, 175
RETURN, 174

RETURNS, 160

REVERSE function, 200

REVOKE, 109

REVOKE ROLE, 109

RIGHT function, 200
ROLE_AUTHORIZATION_DESCRIPTORS, 90
ROLE_COLUMN_GRANTS, 90
ROLE_ROUTINE_GRANTS, 90
ROLE_TABLE_GRANTS, 90
ROLE_UDT_GRANTS, 91
ROLE_USAGE_GRANTS, 91
ROLLBACK, 45

ROLLBACK TO SAVEPOINT, 45
ROUND function datetime, 214
ROUND number function, 205
ROUTINE_COLUMN_USAGE, 91
ROUTINE_JAR USAGE, 91
ROUTINE_PERIOD_USAGE, 91
ROUTINE_PRIVILEGES, 91
ROUTINE_ROUTINE_USAGE, 91
ROUTINE_SEQUENCE_USAGE, 91
ROUTINE_TABLE USAGE, 91
routine body, 161

routine invocation, 135
ROUTINES, 91

ROW_NUMBER function, 225
ROWNUM function, 225

row value expression, 121

RPAD function, 201

RTRIM function, 201

S

SAVEPOINT, 45

SAVEPOINT LEVEL, 163

schemaroutine, 78

SCHEMATA, 91

SCRIPT, 239

search condition, 135

SECOND function, 210

SECONDS SINCE_MIDNIGHT function, 211
SELECT, 137

SELECT : SINGLE ROW, 170
SEQUENCE_ARRAY function, 218
SEQUENCES, 91

SESSION_ID function, 223
SESSION_ISOLATION_LEVEL function, 224
SESSION_TIMEZONE function, 208
SESSION_USER function, 222
SESSIONTIMEZONE function, 208

SET AUTOCOMMIT, 43

352

HyperS@L

SQL Index

SET CATALOG, 47

set clause in UPDATE and MERGE statements, 155
SET CONSTRAINTS, 44

SET DATABASE AUTHENTICATION FUNCTION,
259

SET DATABASE COLLATION, 241

SET DATABASE DEFAULT INITIAL SCHEMA, 107
SET DATABASE DEFAULT ISOLATION LEVEL,
244

SET DATABASE DEFAULT RESULT MEMORY
ROWS, 242

SET DATABASE DEFAULT TABLE TYPE, 242

SET DATABASE EVENT LOG LEVEL, 242

SET DATABASE GC, 243

SET DATABASE LIVE OBJECT, 251

SET DATABASE PASSWORD CHECK FUNCTION,
258

SET DATABASE SQL AVG SCALE, 249

SET DATABASE SQL CHARACTER LITERAL, 248
SET DATABASE SQL CONCAT NULLS, 248

SET DATABASE SQL CONVERT TRUNCATE, 249
SET DATABASE SQL DOUBLE NAN, 250

SET DATABASE SQL IGNORECASE, 251

SET DATABASE SQL NAMES, 246

SET DATABASE SQL NULLSFIRST, 250

SET DATABASE SQL NULLS ORDER, 250

SET DATABASE SQL REFERENCES, 246

SET DATABASE SQL REGULAR NAMES, 246

SET DATABASE SQL RESTRICT EXEC, 245

SET DATABASE SQL SIZE, 245

SET DATABASE SQL SYNTAX DB2, 251

SET DATABASE SQL SYNTAX MSS, 252

SET DATABASE SQL SYNTAX MYS, 252

SET DATABASE SQL SYNTAX ORA, 253

SET DATABASE SQL SYNTAX PGS, 253

SET DATABASE SQL SYSINDEX NAMES, 251
SET DATABASE SQL TDC DELETE, 247

SET DATABASE SQL TRANSLATE TTI TYPES, 248
SET DATABASE SQL TYPES, 247, 247

SET DATABASE SQL UNIQUE NULLS, 249

SET DATABASE TEXT TABLE DEFAULTS, 243
SET DATABASE TRANSACTION CONTROL, 243
SET DATABASE TRANSACTION ROLLBACK ON
CONFLICT, 244, 244

SET DATABASE UNIQUE NAME, 245

SET DATA TYPE, 74

SET DEFAULT, 73

SET DOMAIN DEFAULT, 76

SET FILESBACKUP INCREMENT, 254

SET FILES CACHE ROWS, 254

SET FILES CACHE SIZE, 254

SET FILES DEFRAG, 255

SET FILESLOB COMPRESSED, 257

SET FILESLOB SCALE, 257

SET FILESLOG, 255

SET FILESLOG SIZE, 255

SET FILESNIO, 255

SET FILESNIO SIZE, 256

SET FILES SCALE, 256

SET FILES SCRIPT FORMAT, 257
SET FILES SPACE, 258

SET FILESWRITE DELAY, 256

set function specification, 121

SET IGNORECASE, 48

SET INITIAL SCHEMA*, 107

SET MAXROWS, 48

SET OPERATIONS, 148

SET PASSWORD, 107

SET PATH, 48

SET REFERENTIAL INTEGRITY, 253
SET ROLE, 47

SET SCHEMA, 47

SET SESSION AUTHORIZATION, 46
SET SESSION CHARACTERISTICS, 46
SET SESSION RESULT MEMORY ROWS, 48
SET TABLE CLUSTERED, 69

SET TABLE NEW SPACE, 258

SET TABLE read-write property, 69
SET TABLE SOURCE, 70

SET TABLE SOURCE HEADER, 71
SET TABLE SOURCE on-off, 71
SET TABLE TYPE, 69, 245

SET TIME ZONE, 47

SET TRANSACTION, 43
SHUTDOWN, 238

SIGNAL STATEMENT, 175

SIGN function, 206

SIN function, 206

SINH function, 206

SORT_ARRAY function, 218

sort specification list, 151
SOUNDEX function, 201

SPACE function, 201

SPECIFIC, 60

SPECIFIC NAME, 162
SQL_FEATURES, 91
SQL_IMPLEMENTATION_INFO, 91
SQL_PACKAGES, 92

SQL_PARTS, 92

SQL_SIZING, 92
SQL_SIZING_PROFILES, 92

SQL DATA access characteristic, 163
SQL parameter reference, 120

SQL procedure statement, 82

SQL routine body, 161

SQRT function, 206

START TRANSACTION, 43

string value expression, 125

353

HyperS@L SQL Index

SUBSTR function, 201 TODAY function, 209

SUBSTRING function, 201 TRANSACTION_CONTROL function, 224
SUCCEEDS predicate, 132 TRANSACTION_ID function, 224
SYSDATE function, 209 TRANSACTION_SIZE function, 224
SYSTEM_BESTROWIDENTIFIER, 93 TRANSACTION_UTC function, 224
SYSTEM_CACHEINFO, 93 transaction characteristics, 44
SYSTEM_COLUMN_SEQUENCE_USAGE, 93 TRANSLATE function, 202
SYSTEM_COLUMNS, 93 TRANSLATIONS, 92
SYSTEM_COMMENTS, 93 TRIGGER_COLUMN_USAGE, 92
SYSTEM_CONNECTION_PROPERTIES, 94 TRIGGER_PERIOD_USAGE, 92
SYSTEM_CROSSREFERENCE, 94 TRIGGER_ROUTINE_USAGE, 92
SYSTEM_INDEXINFO, 94 TRIGGER_SEQUENCE_USAGE, 92
SYSTEM_KEY_INDEX_USAGE, 94 TRIGGER_TABLE_USAGE, 92
SYSTEM_PRIMARYKEYS, 94 TRIGGERED_UPDATE_COLUMNS, 92
SYSTEM_PROCEDURECOLUMNS, 94 TRIGGERED SQL STATEMENT, 193
SYSTEM_PROCEDURES, 94 TRIGGER EXECUTION ORDER, 194
SYSTEM_PROPERTIES, 94 TRIGGERS, 92
SYSTEM_SCHEMAS, 94 TRIM_ARRAY function, 218
SYSTEM_SEQUENCES, 94 TRIM function, 201
SYSTEM_SESSIONINFO, 94 TRUNCATE function, 207
SYSTEM_SESSIONS, 94 TRUNCATE SCHEMA, 153
SYSTEM_TABLES, 94 TRUNCATE TABLE, 152
SYSTEM_TABLESTATS, 94 TRUNC function datetime, 214
SYSTEM_TABLETYPES, 95 TRUNC function numeric, 206
SYSTEM_TEXTTABLES, 95

SYSTEM_TYPEINFO, 95 U

SYSTEM_UDTS, 95
SYSTEM_USER function, 222
SYSTEM_USERS, 95
SYSTEM_VERSIONCOLUMNS, 95
system-versioned tables, 68
system-versioned tables usage, 230
SYSTIMESTAMP function, 209

UCASE function, 202
UNHEX function, 202
unicode escape elements, 115
UNION JOIN, 143
UNIQUE constraint, 66
UNIQUE predicate, 130
UNISTR function, 202

SYSUSER, 103 UNIX_MILLIS function, 211
UNIX_TIMESTAMP function, 211

T UNNEST, 140

TABLE_CONSTRAINTS, 92 UPDATE, 155

TABLE_PRIVILEGES, 92 UPPER function, 202

Table Function Derived Table, 141 USAGE_PRIVILEGES, 93

TABLES, 92 USER DEFINED TYPES, 93

TAN function, 206 USER function, 222

TANH function, 206 UUID function, 221

TIMESTAMP_ WITH_ZONE function, 216

TIMESTAMPADD function, 213 vV

TIMESTAMPDIFF function, 213
TIMESTAMP function, 215
Time Zone, 23

TIMEZONE function, 207
TO_BASE64 function, 201
TO_CHAR function, 216
TO_DATE function, 216
TO_NUMBER function, 206
TO_TIMESTAMP function, 216

value expression, 124

value expression primary, 120
value specification, 121
VIEW_COLUMN_USAGE, 93
VIEW_PERIOD_USAGE, 93
VIEW_ROUTINE_USAGE, 93
VIEW_TABLE_USAGE, 93
VIEWS, 93

354

HyperS@L

SQL Index

W

WEEK function, 211
WHILE loop in routines, 171
WIDTH_BUCKET function, 207

Y
Y EAR function, 211

355

HyperS@L

General Index

Symbols
_SYSTEM ROLE, 103

A

ABS function, 203

ACL, 293

ACOS function, 203

ACTION_ID function, 224
ADD_MONTHS function, 212

ADD COLUMN, 71

add column identity generator or sequence, 74
ADD CONSTRAINT, 72

ADD DOMAIN CONSTRAINT, 76
ADD SYSTEM PERIOD, 72

ADD SYSTEM VERSIONING, 73
ADMINISTRABLE_ROLE_AUTHORIZATIONS, 88
aggregate function, 133

ALL and ANY predicates, 130

ALTER COLUMN, 73

alter column identity generator, 74

alter column nullability, 75

ALTER DOMAIN, 76

ALTER INDEX, 84

ALTER routine, 80

ALTER SEQUENCE, 82

ALTER SESSION, 43

ALTERTABLE, 71

ALTER USER ... SET INITIAL SCHEMA, 106
ALTERUSER ... SET LOCAL, 107
ALTER USER ... SET PASSWORD, 106
ALTER view, 75

Ant, 341

APPLICABLE_ROLES, 88

ASCII function, 196

ASCIISTR function, 196

ASIN function, 203

ASSERTIONS, 89

as subquery clause in table definition, 63
ATANZ function, 203

ATAN function, 203
AUTHORIZATION IDENTIFIER, 103
AUTHORIZATIONS, 89

B

backup, 232

BACKUP DATABASE, 238
BETWEEN predicate, 128
binary literal, 116

BINARY types, 19
BIT_LENGTH function, 196

BITAND function, 203
BITANDNOT function, 203
bit literal, 117

BITNOT function, 203
BITOR function, 204

BIT types, 20

BITXOR function, 204
boolean literal, 118
BOOLEAN types, 17
boolean value expression, 126

C

CARDINALITY function, 217
CASCADE or RESTRICT, 60

case expression, 122

CASEWHEN function, 219

CASE WHEN in routines, 173
CAST, 123

CEIL function, 203
CHANGE_AUTHORIZATION, 103
CHAR_LENGTH, 196
CHARACTER_LENGTH, 196
CHARACTER_SETS, 89

character literal, 116
CHARACTER types, 18

character value function, 125
CHAR function, 196
CHECK_CONSTRAINT_ROUTINE_USAGE, 89
CHECK_CONSTRAINTS, 89
CHECK constraint, 67
CHECKPOINT, 239

check table, 231

COALESCE expression, 122
COALESCE function, 219
COLLATE, 135

COLLATIONS, 89
COLUMN_COLUMN_USAGE, 89
COLUMN_DOMAIN_USAGE, 89
COLUMN_PRIVILEGES, 89
COLUMN_UDT_USAGE, 89
column DEFAULT clause, 65
column definition, 63

column name list, 142

column reference, 120

COLUMNS, 89

COMMENT, 61

COMMIT, 45

comparison predicate, 127
CONCAT_WSfunction, 197
CONCAT function, 197
CONSTRAINT, 136
CONSTRAINT_COLUMN_USAGE, 89
CONSTRAINT_PERIOD_USAGE, 89

356

HyperS@L

General Index

CONSTRAINT _TABLE USAGE, 89
CONSTRAINT (table constraint), 66
CONSTRAINT name and characteristics, 65
CONTAINS predicate, 131
contextually typed value specification, 120
CONVERT function, 219
COSfunction, 204

COSH function, 204

COT function, 204
CREATE_SCHEMA ROLE, 103
CREATE AGGREGATE FUNCTION, 184
CREATE ASSERTION, 86

CREATE CAST, 84

CREATE CHARACTER SET, 85
CREATE COLLATION, 85
CREATE DOMAIN, 76

CREATE FUNCTION, 160
CREATE INDEX, 83

CREATE PROCEDURE, 160
CREATE ROLE, 107

CREATE SCHEMA, 61

CREATE SEQUENCE, 81

CREATE SYNONYM, 83

CREATE TABLE, 62

CREATE TRANSLATION, 85
CREATE TRIGGER, 77, 192
CREATETYPE, 84

CREATE USER, 106
CREATEVIEW, 75

CROSS JOIN, 142

CRYPT_KEY function, 221
CURDATE function, 209
CURRENT_CATALOG function, 223
CURRENT_DATE function, 208
CURRENT_ROLE function, 222
CURRENT_SCHEMA function, 222
CURRENT_TIME function, 208
CURRENT_TIMESTAMP function, 208
CURRENT_USER function, 222
CURRENT VALUE FOR, 124
CURTIME function, 209

D

DATA_TYPE_PRIVILEGES, 89
DATABASE_ISOLATION_LEVEL function, 224
DATABASE_NAME function, 222
DATABASE_TIMEZONE function, 208
DATABASE_VERSION function, 222
DATABASE function, 222

DATE_ADD function, 213

DATE_SUB function, 214

DATEADD function, 214

DATEDIFF function, 214

DATENAME, DATEPART and EOMONTH functions,
209

datetime and interval literal, 118
Datetime Operations, 23
DATETIME types, 22
datetime value expression, 125
datetime value function, 125
DAYNAME function, 209

DAY OFMONTH function, 209
DAY OFWEEK function, 210
DAY OFY EAR function, 210
DAY Sfunction datetime, 210
DBA ROLE, 103

DECLARE CURSOR, 115
DECLARE HANDLER, 169
DECLARE variable, 167
DECODE function, 220
DEGREES function, 204
DELETE FROM, 152

derived table, 140
DETERMINISTIC characteristic, 163
DIAGNOSTICS function, 221
DIFFERENCE function, 197
DISCONNECT, 46

DISTINCT, 147
DOMAIN_CONSTRAINTS, 90
DOMAINS, 90

DROP ASSERTION, 86

DROP CAST, 84

DROP CHARACTER SET, 85
DROP COLLATION, 85

DROP COLUMN, 72

drop column identity generator, 74
DROP CONSTRAINT, 72
DROP DEFAULT (table), 74
DROP DOMAIN, 77

DROP DOMAIN CONSTRAINT, 77
DROP DOMAIN DEFAULT, 76
DROP INDEX, 84

DROP ROLE, 108

DROP routine, 81

DROP SCHEMA, 62

DROP SEQUENCE, 82

DROP SYNONYM, 83

DROP SYSTEM PERIOD, 73
DROP SYSTEM VERSIONING, 73
DROP TABLE, 68

DROP TRANSLATION, 86
DROP TRIGGER, 78, 194
DROP USER, 106
DROPVIEW, 75

DYNAMIC RESULT SETS, 164

357

HyperS@L

General Index

E

ELEMENT _TYPES, 90
ENABLED_ROLES, 90
EQUALS predicate, 131
EXISTS predicate, 130
EXP function, 204
EXPLAIN PLAN, 152
EXPLAIN REFERENCES, 87
expression, 122

external authentication, 237
EXTERNAL NAME, 162
EXTRACT function, 211

F

Fine Grained Data Access Control, 105
FLOOR function, 204

FOREIGN KEY constraint, 66

FOR loop in routines, 172
FROM_BASE®64 function, 197

G

generated column specification, 64
GET DIAGNOSTICS, 158
Gradle, 335

GRANTED BY, 108

GRANT privilege, 108

GRANT role, 109

GREATEST function, 220
GROUPBY, 145

GROUPING OPERATIONS, 145

H

HAVING, 147

HEX function, 198
HEXTORAW function, 198
HOUR function, 210

I

identifier chain, 119

identifier definition, 59

IDENTITY function, 222

IF EXISTS, 60

IFNOT EXISTS, 60

IFNULL function, 220

IF STATEMENT, 173
INFORMATION_SCHEMA_CATALOG_NAME, 90
init script, 303

IN predicate, 128

INSERT function, 197

INSERT INTO, 153

INSTR function, 197

interval absolute value function, 126

interval term, 126

INTERVAL types, 26

IS AUTOCOMMIT function, 223

IS READONLY_DATABASE FILESfunction, 223
IS READONLY_DATABASE function, 223

IS READONLY_SESSION function, 223
ISDISTINCT predicate, 132

ISNULL function, 220

ISNULL predicate, 129

ISOLATION_LEVEL function, 223

J

JOIN USING, 143
JOIN with condition, 143

K

KEY_COLUMN_USAGE, 90
KEY_PERIOD_USAGE, 90

L

LANGUAGE, 162
LAST_DAY function, 212
LATERAL, 140

LCASE function, 198
LEAST function, 220
LEFT function, 198
LENGTH function, 198
like clause in table definition, 62
LIKE predicate, 129

LN function, 204
LOAD_FILE function, 220
LOB_ID function, 224
LOCALTIME function, 208
LOCALTIMESTAMP function, 208
LOCATE function, 198
LOCK TABLE, 44

LOG10 function, 205

LOG function, 205
LOOPin routines, 171
LOWER function, 198
LPAD function, 199
LTRIM function, 199

M

MATCH predicate, 130
MAX_CARDINALITY function, 218
memory use, 309

MERGE INTO, 156

MINUTE function, 210

MOD function, 205

MONTH function, 210
MONTHNAME function, 210
MONTHS BETWEEN function, 212

358

HyperS@L

General Index

N

name resolution, 145
naming in joined table, 145
naming in select list, 145

NATURAL JOIN, 143

NAVL function, 205

NEXT_DAY function, 212

NEXT VALUE FOR, 123

NOW function, 209

NULLIF function, 220

NULL INPUT, 163

numeric literal, 117

NUMERIC types, 15
numeric value expression, 124
numeric value function, 124
NUMTODSINTERVAL function, 215
NUMTOYMINTERVAL function, 215
NVL2 function, 221

NVL function, 221

O

OCTET_LENGTH function, 199

ON UPDATE clause (table constraint), 65
OTHER type, 21

OUTER JOIN, 144

OVERLAPS predicate, 132

OVERLAY function, 199

P

PARAMETERS, 90

password complexity, 237

PATH, 135

PERFORM CHECK INDEX, 241
PERFORM EXPORT SCRIPT, 240
PERFORM IMPORT SCRIPT, 240
PERIODS, 90

PI function, 205
POSITION_ARRAY function, 218
POSITION function, 199

POWER function, 205
PRECEDES predicate, 132
PRIMARY KEY constraint, 66
PUBLIC ROLE, 103

Q

QUARTER function, 210

R

RADIANS function, 205

RAND function, 205

RAWTOHEX function, 199
REFERENTIAL_CONSTRAINTS, 90

REGEXP_MATCHES function, 200
REGEXP_REPLACE function, 200

REGEXP_SUBSTRING_ARRAY function, 200

REGEXP_SUBSTRING function, 200
RELEASE SAVEPOINT, 45
RENAME, 60

REPEAT ... UNTIL loop in routines, 172
REPEAT function, 200

REPLACE function, 200

RESIGNAL STATEMENT, 175
RETURN, 174

RETURNS, 160

REVERSE function, 200

REVOKE, 109

REVOKE ROLE, 109

RIGHT function, 200

ROLE_AUTHORIZATION_DESCRIPTORS, 90

ROLE_COLUMN_GRANTS, 90
ROLE_ROUTINE_GRANTS, 90
ROLE_TABLE_GRANTS, 90
ROLE_UDT_GRANTS, 91
ROLE_USAGE_GRANTS, 91
ROLLBACK, 45

ROLLBACK TO SAVEPOINT, 45
ROUND function datetime, 214
ROUND number function, 205
ROUTINE_COLUMN_USAGE, 91
ROUTINE_JAR USAGE, 91
ROUTINE_PERIOD_USAGE, 91
ROUTINE_PRIVILEGES, 91
ROUTINE_ROUTINE _USAGE, 91
ROUTINE_SEQUENCE_USAGE, 91
ROUTINE_TABLE USAGE, 91
routine body, 161

routine invocation, 135
ROUTINES, 91

ROW_NUMBER function, 225
ROWNUM function, 225

row value expression, 121

RPAD function, 201

RTRIM function, 201

S

SAVEPOINT, 45
SAVEPOINT LEVEL, 163
schemaroutine, 78
SCHEMATA, 91
SCRIPT, 239

search condition, 135
SECOND function, 210

SECONDS_SINCE_MIDNIGHT function, 211

security, 6, 290, 293
SELECT, 137

359

HyperS@L

General Index

SELECT : SINGLE ROW, 170

SEQUENCE_ARRAY function, 218

SEQUENCES, 91

SESSION_ID function, 223
SESSION_ISOLATION_LEVEL function, 224
SESSION_TIMEZONE function, 208
SESSION_USER function, 222

SESSIONTIMEZONE function, 208

SET AUTOCOMMIT, 43

SET CATALOG, 47

set clause in UPDATE and MERGE statements, 155
SET CONSTRAINTS, 44

SET DATABASE AUTHENTICATION FUNCTION,
259

SET DATABASE COLLATION, 241

SET DATABASE DEFAULT INITIAL SCHEMA, 107
SET DATABASE DEFAULT ISOLATION LEVEL,
244

SET DATABASE DEFAULT RESULT MEMORY
ROWS, 242

SET DATABASE DEFAULT TABLE TYPE, 242

SET DATABASE EVENT LOG LEVEL, 242

SET DATABASE GC, 243

SET DATABASE LIVE OBJECT, 251

SET DATABASE PASSWORD CHECK FUNCTION,
258

SET DATABASE SQL AVG SCALE, 249

SET DATABASE SQL CHARACTER LITERAL, 248
SET DATABASE SQL CONCAT NULLS, 248

SET DATABASE SQL CONVERT TRUNCATE, 249
SET DATABASE SQL DOUBLE NAN, 250

SET DATABASE SQL IGNORECASE, 251

SET DATABASE SQL NAMES, 246

SET DATABASE SQL NULLSFIRST, 250

SET DATABASE SQL NULLS ORDER, 250

SET DATABASE SQL REFERENCES, 246

SET DATABASE SQL REGULAR NAMES, 246

SET DATABASE SQL RESTRICT EXEC, 245

SET DATABASE SQL SIZE, 245

SET DATABASE SQL SYNTAX DB2, 251

SET DATABASE SQL SYNTAX MSS, 252

SET DATABASE SQL SYNTAX MYS, 252

SET DATABASE SQL SYNTAX ORA, 253

SET DATABASE SQL SYNTAX PGS, 253

SET DATABASE SQL SYSINDEX NAMES, 251
SET DATABASE SQL TDC DELETE, 247

SET DATABASE SQL TRANSLATE TTI TYPES, 248
SET DATABASE SQL TYPES, 247, 247

SET DATABASE SQL UNIQUE NULLS, 249

SET DATABASE TEXT TABLE DEFAULTS, 243
SET DATABASE TRANSACTION CONTROL, 243
SET DATABASE TRANSACTION ROLLBACK ON
CONFLICT, 244, 244

SET DATABASE UNIQUE NAME, 245

SET DATA TYPE, 74

SET DEFAULT, 73

SET DOMAIN DEFAULT, 76

SET FILESBACKUP INCREMENT, 254
SET FILES CACHE ROWS, 254

SET FILES CACHE SIZE, 254

SET FILES DEFRAG, 255

SET FILESLOB COMPRESSED, 257
SET FILESLOB SCALE, 257

SET FILESLOG, 255

SET FILESLOG SIZE, 255

SET FILESNIO, 255

SET FILESNIO SIZE, 256

SET FILES SCALE, 256

SET FILES SCRIPT FORMAT, 257
SET FILES SPACE, 258

SET FILESWRITE DELAY, 256

set function specification, 121

SET IGNORECASE, 48

SET INITIAL SCHEMA*, 107

SET MAXROWS, 48

SET OPERATIONS, 148

SET PASSWORD, 107

SET PATH, 48

SET REFERENTIAL INTEGRITY, 253
SET ROLE, 47

SET SCHEMA, 47

SET SESSION AUTHORIZATION, 46
SET SESSION CHARACTERISTICS, 46
SET SESSION RESULT MEMORY ROWS, 48
SET TABLE CLUSTERED, 69

SET TABLE NEW SPACE, 258

SET TABLE read-write property, 69
SET TABLE SOURCE, 70

SET TABLE SOURCE HEADER, 71
SET TABLE SOURCE on-off, 71

SET TABLE TYPE, 69, 245

SET TIME ZONE, 47

SET TRANSACTION, 43
SHUTDOWN, 238

SIGNAL STATEMENT, 175

SIGN function, 206

SIN function, 206

SINH function, 206

SORT_ARRAY function, 218

sort specification list, 151

SOUNDEX function, 201

SPACE function, 201

SPECIFIC, 60

SPECIFIC NAME, 162
SQL_FEATURES, 91
SQL_IMPLEMENTATION_INFO, 91
SQL_PACKAGES, 92

SQL_PARTS, 92

360

HyperS@L

General Index

SQL_SIZING, 92
SQL_SIZING_PROFILES, 92

SQL DATA access characteristic, 163
SQL parameter reference, 120

SQL procedure statement, 82

SQL routine body, 161

SQRT function, 206

START TRANSACTION, 43

string value expression, 125

SUBSTR function, 201

SUBSTRING function, 201
SUCCEEDS predicate, 132
SYSDATE function, 209
SYSTEM_BESTROWIDENTIFIER, 93
SYSTEM_CACHEINFO, 93
SYSTEM_COLUMN_SEQUENCE_USAGE, 93
SYSTEM_COLUMNS, 93
SYSTEM_COMMENTS, 93
SYSTEM_CONNECTION_PROPERTIES, 94
SYSTEM_CROSSREFERENCE, 94
SYSTEM_INDEXINFO, 94
SYSTEM_KEY_INDEX_USAGE, 94
SYSTEM_PRIMARYKEYS, 94
SYSTEM_PROCEDURECOLUMNS, 94
SYSTEM_PROCEDURES, 94
SYSTEM_PROPERTIES, 94
SYSTEM_SCHEMAS, 94
SYSTEM_SEQUENCES, 94
SYSTEM_SESSIONINFO, 94
SYSTEM_SESSIONS, 94
SYSTEM_TABLES, 94
SYSTEM_TABLESTATS, 94
SYSTEM_TABLETYPES, 95
SYSTEM_TEXTTABLES, 95
SYSTEM_TYPEINFO, 95
SYSTEM_UDTS, 95
SYSTEM_USER function, 222
SYSTEM_USERS, 95
SYSTEM_VERSIONCOLUMNS, 95
system-versioned tables, 68
system-versioned tables usage, 230
SYSTIMESTAMP function, 209
SYSUSER, 103

T

TABLE_CONSTRAINTS, 92
TABLE_PRIVILEGES, 92

Table Function Derived Table, 141
TABLES, 92

TAN function, 206

TANH function, 206
TIMESTAMP_WITH_ZONE function, 216
TIMESTAMPADD function, 213

TIMESTAMPDIFF function, 213
TIMESTAMP function, 215
Time Zone, 23

TIMEZONE function, 207
TO_BASE64 function, 201
TO_CHAR function, 216
TO_DATE function, 216
TO_NUMBER function, 206
TO_TIMESTAMP function, 216
TODAY function, 209

TRANSACTION_CONTROL function, 224

TRANSACTION_ID function, 224

TRANSACTION_SIZE function, 224
TRANSACTION_UTC function, 224

transaction characteristics, 44
TRANSLATE function, 202
TRANSLATIONS, 92
TRIGGER_COLUMN_USAGE, 92
TRIGGER_PERIOD_USAGE, 92
TRIGGER_ROUTINE _USAGE, 92

TRIGGER_SEQUENCE_USAGE, 92

TRIGGER_TABLE_USAGE, 92

TRIGGERED_UPDATE_COLUMNS, 92

TRIGGERED SQL STATEMENT, 193
TRIGGER EXECUTION ORDER, 194

TRIGGERS, 92
TRIM_ARRAY function, 218
TRIM function, 201
TRUNCATE function, 207
TRUNCATE SCHEMA, 153
TRUNCATE TABLE, 152
TRUNC function datetime, 214
TRUNC function numeric, 206

U

UCASE function, 202
UNHEX function, 202
unicode escape elements, 115
UNION JOIN, 143

UNIQUE constraint, 66
UNIQUE predicate, 130
UNISTR function, 202
UNIX_MILLIS function, 211
UNIX_TIMESTAMP function, 211
UNNEST, 140

UPDATE, 155

upgrading, 315

UPPER function, 202
USAGE_PRIVILEGES, 93
USER DEFINED_TYPES, 93
USER function, 222

UUID function, 221

361

HyperS@L

General Index

\%

value expression, 124

value expression primary, 120
value specification, 121
VIEW_COLUMN_USAGE, 93
VIEW_PERIOD_USAGE, 93
VIEW_ROUTINE_USAGE, 93
VIEW_TABLE_USAGE, 93
VIEWS, 93

W

WEEK function, 211
WHILE loop in routines, 171
WIDTH_BUCKET function, 207

Y
Y EAR function, 211

362

	HyperSQL User Guide
	Table of Contents
	Preface
	Available formats for this document

	Chapter 1. Running and Using HyperSQL
	Introduction
	The HSQLDB Jar
	Running Database Access Tools
	A HyperSQL Database
	In-Process Access to Database Catalogs
	Server Modes
	HyperSQL HSQL Server
	HyperSQL HTTP Server
	HyperSQL HTTP Servlet
	Connecting to a Database Server
	Security Considerations
	Using Multiple Databases

	Accessing the Data
	Closing the Database
	Creating a New Database

	Chapter 2. SQL Language
	SQL Standards Support
	Definition Statements (DDL and others)
	Data Manipulation Statements (DML)
	Data Query Statements (DQL)
	Calling User Defined Procedures and Functions
	Setting Properties for the Database and the Session
	General Operations on Database
	Transaction Statements
	Comments in Statements

	SQL Data and Tables
	Persistent Tables
	Temporary Tables

	Short Guide to Data Types
	Data Types and Operations
	Numeric Types
	Boolean Type
	Character String Types
	Binary String Types
	Bit String Types
	Lob Data
	Storage and Handling of Java Objects
	Type Length, Precision and Scale

	Datetime types
	Interval Types
	Arrays
	Array Definition
	Trigraph

	Array Reference
	Array Operations

	Indexes and Query Speed
	Query Processing and Optimisation
	Indexes and Conditions
	Indexes and Operations
	Indexes and ORDER BY, OFFSET and LIMIT

	Chapter 3. Sessions and Transactions
	Overview
	Session Attributes and Variables
	Session Attributes
	Session Variables
	Session Tables

	Transactions and Concurrency Control
	Two Phase Locking
	Two Phase Locking with Snapshot Isolation
	Lock Contention in 2PL
	Locks in SQL Routines and Triggers
	MVCC
	Choosing the Transaction Model
	Schema and Database Change
	Simultaneous Access to Tables
	Viewing Sessions

	Session and Transaction Control Statements

	Chapter 4. Schemas and Database Objects
	Overview
	Schemas and Schema Objects
	Names and References
	Character Sets
	Collations
	Distinct Types
	Domains
	Number Sequences
	Tables
	Views
	Constraints
	Assertions
	Triggers
	Routines
	Indexes
	Synonyms

	Statements for Schema Definition and Manipulation
	Common Elements and Statements
	Renaming Objects
	Commenting Objects
	Schema Creation
	Table Creation
	Temporal System-Versioned Tables and SYSTEM_TIME Period
	Table Settings
	Table Manipulation
	View Creation and Manipulation
	Domain Creation and Manipulation
	Trigger Creation
	Routine Creation
	Sequence Creation
	SQL Procedure Statement
	Other Schema Object Creation

	The Information Schema
	References to Database Objects
	Predefined Character Sets, Collations and Domains
	Views in INFORMATION SCHEMA
	Visibility of Information
	Name Information
	Data Type Information
	Product Information
	Operations Information
	SQL Standard Views
	HyperSQL Custom Views

	Chapter 5. Text Tables
	Overview
	The Implementation
	Definition of Tables
	Scope and Reassignment
	Null Values in Columns of Text Tables
	Configuration
	Disconnecting Text Tables

	Text File Usage
	Text File Global Properties
	Transactions

	Chapter 6. Access Control
	Overview
	Authorizations and Access Control
	Built-In Roles and Users
	Listing Users and Roles
	Access Rights
	Fine-Grained Data Access Control

	Statements for Authorization and Access Control

	Chapter 7. Data Access and Change
	Overview
	Cursors And Result Sets
	Columns and Rows
	Navigation
	Updatability
	Sensitivity
	Holdability
	Autocommit
	JDBC Overview
	JDBC Parameters
	JDBC and Data Change Statements
	JDBC Callable Statement
	JDBC Returned Values
	Cursor Declaration

	Syntax Elements
	Literals
	References, etc.
	Value Expression
	Predicates
	Aggregate Functions
	Other Syntax Elements

	Data Access Statements
	Select Statement
	Table
	Subquery
	Query Specification
	Table Expression
	Table or Query Name
	System Time Period
	Derived Table
	Lateral
	UNNEST
	Table Function Derived Table
	Parenthesized Joined Table
	Column Name List

	Joined Table
	Selection
	Projection
	Computed Columns
	Naming
	Grouping Operations
	Aggregation
	Set Operations
	With Clause and Recursive Queries
	Query Expression
	Ordering
	Slicing
	Indexes Used in SELECT Statements

	Data Change Statements
	Delete Statement
	Truncate Statement
	Insert Statement
	Update Statement
	Merge Statement

	Diagnostics and State

	Chapter 8. SQL-Invoked Routines
	Overview
	Routine Definition
	Routine Characteristics

	SQL Language Routines (PSM)
	Advantages and Disadvantages
	Routine Statements
	Compound Statement
	Table Variables
	Variables
	Cursors
	Handlers
	Assignment Statement
	Select Statement : Single Row
	Formal Parameters
	Iterated Statements
	Iterated FOR Statement
	Conditional Statements
	Return Statement
	Control Statements
	Raising Exceptions
	Routine Polymorphism
	Returning Data From Procedures
	Recursive Routines

	Java Language Routines (SQL/JRT)
	Polymorphism
	Java Language Procedures
	Java Static Methods
	Legacy Support
	Securing Access to Classes and Routines
	Warning

	User-Defined Aggregate Functions
	Definition of Aggregate Functions
	SQL PSM Aggregate Functions
	Java Aggregate Functions

	Chapter 9. Triggers
	Overview
	BEFORE Triggers
	AFTER Triggers
	INSTEAD OF Triggers

	Trigger Properties
	Trigger Event
	Granularity
	Trigger Action Time
	References to Rows
	Trigger Condition
	Trigger Action in SQL
	Trigger Action in Java

	Trigger Creation

	Chapter 10. Built In Functions
	Overview
	String and Binary String Functions
	Numeric Functions
	Date Time and Interval Functions
	Functions to Report the Time Zone.
	Functions to Report the Current Datetime
	Functions to Extract an Element of a Datetime
	Functions for Datetime Arithmetic
	Functions to Convert or Format a Datetime

	Array Functions
	General Functions
	System Functions

	Chapter 11. System Management
	Modes of Operation
	Deployment Types
	Database Types
	Readonly Databases
	RES and Files Readonly Databases

	Tables
	Large Objects
	Deployment context

	ACID, Persistence and Reliability
	Atomicity, Consistency, Isolation, Durability
	System Operations

	Temporal System-Versioned Tables
	Using Table Spaces
	Checking Database Tables and Indexes
	Backing Up and Restoring Database Catalogs
	Making Online Backups
	Offline Backup Utility Syntax
	Making Offline Backups
	Examining Backups
	Restoring a Backup

	Encrypted Databases
	Creating and Accessing an Encrypted Database
	Speed Considerations
	Security Considerations

	Monitoring Database Operations
	External Statement Level Monitoring
	Internal Statement Level Monitoring
	Internal Event Monitoring
	Log4J and JDK logging
	Server Operation Monitoring

	Database Security
	Basic Security Recommendations
	Beyond Security Defaults
	Authentication Control

	Statements
	System Operations
	Data Management Statements
	Database Settings
	SQL Conformance Settings
	Cache, Persistence and Files Settings
	Authentication Settings

	Chapter 12. Compatibility With Other DBMS
	Compatibility Overview
	PostgreSQL Compatibility
	MySQL Compatibility
	Firebird Compatibility
	Apache Derby Compatibility
	Oracle Compatibility
	DB2 Compatibility
	MS SQLServer and Sybase Compatibility

	Chapter 13. Properties
	Connection URL
	Variables In Connection URL
	Properties for Individual Connections
	Properties for the Database
	SQL Conformance Properties
	Database Operations Properties
	Database File and Memory Properties
	Crypt Properties

	System Properties

	Chapter 14. HyperSQL Network Listeners (Servers)
	Listeners
	HyperSQL Server
	HyperSQL HTTP Server
	HyperSQL HTTP Servlet

	Server and Web Server Properties
	Starting a Server from your Application
	Shutting down a Server from your Application
	Allowing a Connection to Open or Create a Database
	Specifying Database Properties at Server Start
	TLS Encryption
	Requirements
	Encrypting your JDBC connection
	Client-Side
	Server-Side (Listener-Side)

	Making a Private-key Keystore
	CA-Signed Cert
	Non-CA-Signed Cert

	Automatic Server or WebServer startup on UNIX

	Network Access Control

	Chapter 15. HyperSQL on UNIX
	Purpose
	Installation
	Setting up a HyperSQL Persistent Database Catalog and a HyperSQL Network Listener
	Accessing your Database
	Create additional Accounts
	Shutdown
	Running Hsqldb as a System Daemon
	Portability of hsqldb init script
	Init script Setup Procedure
	Troubleshooting the Init Script

	Upgrading

	Chapter 16. Deployment Guide
	Memory and Disk Use
	Table Memory Allocation
	Result Set Memory Allocation
	Temporary Memory Use During Operations
	Data Cache Memory Allocation
	Object Pool Memory Allocation
	Lob Memory Usage
	Using NIO File Access
	Extra Disk Space Use
	Using HyperSQL Without Logging Data Change
	Bulk Inserts, Updates and Deletes

	Managing Database Connections
	Application Development and Testing
	Tweaking the Mode of Operation
	Embedded Databases in Desktop Applications
	Embedded Databases in Server Applications
	Mixed Mode : Embedding a HyperSQL Server (Listener)
	Server Databases

	Upgrading Databases
	Manual Changes to the *.script File

	Backward Compatibility Issues
	HyperSQL Dependency Settings for Applications
	What version to Pull
	Using the HyperSQL Snapshot Repository
	Snapshot Dependency Specification Examples

	Range Versioning
	Range Dependency Specification Examples

	Chapter 17. HyperSQL via ODBC
	Overview
	Unix / Linux Installation
	Windows Installation
	Settings
	Samples
	Table of Settings

	Appendix A. Lists of Keywords
	List of SQL Standard Keywords
	List of SQL Keywords Disallowed as HyperSQL Identifiers
	Special Function Keywords

	Appendix B. HyperSQL Database Files and Recovery
	Database Files
	States
	Procedures
	Clean Shutdown
	Startup
	Restore

	Appendix C. Building HSQLDB Jars
	Purpose
	Building with Gradle
	Invoking a Gradle Build Graphically
	Invoking a Gradle Build from the Command Line
	Using Gradle
	Using Text-based Gradle
	Using the Gradle GUI

	Building with Apache Ant
	Obtaining Ant
	Building HSQLDB with Ant
	Building for Different JDKs

	Building with IDE Compilers
	HyperSQL CodeSwitcher
	Building Documentation

	Appendix D. HyperSQL with OpenOffice
	HyperSQL with OpenOffice
	Using OpenOffice / LibreOffice as a Database Tool
	Converting .odb files to use with HyperSQL Server

	Appendix E. HyperSQL File Links
	SQL Index
	General Index

